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MATHEMATICS

There shall be one written paper of 80 marks and of three hours duration
and 20 marks shall be reserved for internal asessment. Paper will be set for 80 marks. In
case of regular students, internal assessment received from the colleges will be added to
the marks obtained by them in the university examination and in each case of private
candidates, marks obtained by them in the Univesity examination shall be increased
proportionately in accordance with the Statutes / Regulations.

SYLLABUS
SEMESTER -1
CALCULUS
Total Marks : 100
Credits - 04 Theory Examination : 80
Course No. MA - 101 Internal Assessment : 20
Unit-I  Function of two variables, their limit and continuity. Partial derivatives and Euler’s

Unit-II

Unit ITI

UnitIV

theorem for homogeneous functions. Total derivatives and equality of fXy (x,y)
and f_ (x,y), double points, concavity, convexity and points of inflexion (11
lectures)

Asymptotes in cartesian forms, Envelopes of one and two parameter family of
curves. Indeterminate forms, L’ Hospital rule, Curve tracing in cartesian
co-ordinates. (10 lectures)

Ordinary and partial derivatives of vector-valued functions, Directional

derivatives of vector-valued function of several variables, the operator V,
Gradient of scaler function, divergence and curl of vector functions, seond order

derivative of functions, the Laplacian operator V 2, Line Integral. (14 lectures).

Polar co-ordinates and their relationship with cartesian coordinates, Angle
between radius vector and tangent at a point on the curve and the angle of
intersection of two curves, curve sketching in polar co-ordinates such asr =
a+b cos0, a+b sinB, a cosn 0, a sinn O (for n=2 and 3 only). (13 lectures)

@



Unit-V  Reduction formulae of Rectification of plane curve in cartesian form only,
Volume and surface of revolution of curves in cartesian form. (13 lectures)

NOTE FOR PAPER SETTING

1. Each lecture will be of one hour duration.

2. The question paper shall contsist of 10 questions, two questions from each unit. The
candidate will be required to do five questions selecting exactly one question from each
unit.

BOOKS RECOMMENDED

1. Differential Calculus by Shanti Narayan, Dr. P. K. Mittle, Pub. S. Chand

2. Vector Calculus by Shanti Narayan, Dr. P. K. Mittle, Pub. S. Chand

3. Integral Calculus by Shanti Narayan, Dr. P. K. Mittle, Pub. S. Chand

(ii)



B.A. Semester-I
Unit-I MATHEMATICS Lesson No.-1

Prof. Vijay Rattan,
M.A.M. College, Jammu

Objectives

To develop the knowledge of partial differentiation.
Structure

1) Function of Several Variables.

1) Partial Differentiation.

1i1) Euler’s theorem on Homogenous functions.
Introduction

In this lesson you will be made :

1) Familiar with functions of two or more variables.

1) Finding derivatives of a function w.r.t. one variable keeping the
othervariables constant.

1i1) application of Euler’s theorem to homogenous functions.
Objectives

To develop the knowledge of partial differentiation which is necessary
in studying many other chapters of differential calculus prescribed in
your course.



Functions of Several Variables

Definition : If to each pair (x, y) of values of two independent
variable quantities x and vy, there corresponds a definite value (unique)
of the quantity z, then we say z is a function of two independent
variables x and y.

A function z of two variables x and y is symbolically written as
z=f(x, y), z=F(x,y) and so forth.

Examples

1. Let V be the volume of a box of length x units, breadth y units and
height z units, then V=xyz

Volume is a function of length, breadth and height.

Definition : The collection of triads (x, y, z) of values of x, y and z for
which V is defined is called domains of functions V,

where V=1{(x, vy, z)
x2+y2+22+t2, , _
2. u= > is a function of four variables x, y, z and t.
1-x

Partial Differential Coefficients

Let z=f(x, y) be a function of two variables x and y, then P

O fx orfx(x,y) is called first order partial derivative of z w.r.to

< and is defind as:

oz Lt f(x+0x,y)—-f(x, y)

ax_aX—)O ax

0z of
Where as 8_y or a_y or fy or fy(x, y) is called first order partial
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derivative of z w.r. to y and is defined as

oz 14 fxy+oy)—f(x y)

Second Order Partial Derivatives : for Z=f(x, y) are :

(3_2Z 5_2Z q 0%z 0%z
ox2’ ay? an Ox0y * 0yo x

2y 2[d) & ofd] 2 o o]
ox2 oOx | 0x | gy? 9y |0y | oxdy ox Oy

, P o
an dyox Oy

where

8x] Similarly third order partial derivatives can

also be found.

Example
2 2 2
ou -
1. If u=x*tan™' (Xj —y? tan™! (ij , then show that X 3 Y 5
X y 0x0y 2. y
Sol. u=x’tan’! (Xj —y? tan™! (ij ...... (1)
X y

Differentiate on both side partially w.r.t. y we get

S e



2
X X Xy
= -2y tan’! (—j +
2 2 X2 +y2

—=x2vy tan’'| X
ay Y (y)

Differentiate on both sides partially w.r.t. x we get

6%u {9 1 1
= | — y.—-_
oxdy l+(x/y)2 y

*u_, 2y 1, 2
8X8y 'X2+y2 y X2+y2

82u X2 +Y2 —2}’2

8x8y B x2 +y2 ’

o%u _X2 —YZ
ax@y x2 —|—y2

Hence

. If z=tan! (X) , then show that :
X



Sol. z=tan! (X) ....... (1)

=

X

Diff. on both side partially w.r.t. x, we get

@_;2 (_ /Xz) %_ -y
ax_1+(y/x) 7Y ’ = 6)<_Xz+y2
0z : . .
&Z—y(xz-i-yz)‘1 Diff. again partiallyw.r.t. x, we get
0%z .
7 =(=Y)ED(x+y?).(2x)

ox

2
0°z 2xy

=TT 5 2

x> (Xz +y2)2 @)
Diff. (1) partially w.r.t. y , we get
oz 1 1 b oz X
PN S =2 2
O 14(yx)? XN x4y
0z ~ ) . .
a—=x(x2+y2) !, Diff. again partially w.r.t. y , we get

y

2
07z
— =X(=D(x*y*) . Q2y),
oy

2
0°z —2Xxy
I =u 3)

2 2
7 )



Adding equations (2) and (3), we get

0%z 0%z
— =0
ox2 oy
3
3. If u=e? then show that &=(1+3xyz+xzyzzz)e"yz
' ’ 0x Oy 0z

Sol. Here u=e**

Diff. on both side partially w.r.t. z , we get

@ — Xyz
P =XYy¢

Diff. again partially w.r.t. y , we get

6%u
0y 0z

=x[1.e"*ty.(xz)e"*]

82

u
— =(x+ 2 Xyz
= oy o2 (x+x%yz)e

Diff. partially w.r.t. x , we get

3u
0x 0y 0z

=(1+2x.yz)e™*+H(x+x%yz).(yz)e**

=[(1+2xyz) H(x+x%yz).(yz)]e®*

Su
0x Oy 0z

Hence =[(1+3xyz+x?y*z?)[e™* .



2 2

0

4. If z=f(x+ay)+f(x—ay), then prove that —;zaz.a—zz
oy ox

Sol. Here z=f(x+ay)+f(x-ay) ... (1)

Diff. (1) partially w.r.t. x , we get

%—P + 1+f 1
ox (x+ay).1+1'(x-ay).

Diff. again partially w.r.t. x , we get

62
a_2z =" (x+ay)+{"(x-ay) . (2)
X

Diff. (1) partially w.r.t. y , we get

oz
oy =f'(x+ay).a+f'(x—ay).(—a)

Diff. again partially w.r.t. y , we get

2
0
_2Z :aZf" (X+ay')+(—a)2_ f" (X_ay)
0y
0%z

= =[xty x-ay)] 3)
0y
; %7 0%z
From equations (2) and (3), we get >~ =—
OX ay

3
Activity 1 : If u=log (x*+y*+z’-3xyz), then show that du v, u_
Ox 0y 0z X+y+z
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Activity 2 : If u=e*(x cos y—y siny), then prove that —+_——75=0
y

ou)? (ou 2 ou)?
Activity 3 1 =7 1 y2 2 then prove that (%) *[gj A2 =

Homogenous function : A function z in x and y is said to be a homogenous
function of degree n if it can be put in the form

z=x"[A function of (y/x)]

Equivalently z=f(x, y) is called a homogenous function of degree x
if f(tx, ty)=t" f(x, y).
Example

1. z=x’+y*+3x?y+2xy? is a homogenous function of degree 3 in x and
y as

=X [1+(y/x)*+3(y/x)+2(y/x)?]

or z=x’[|A function of (y/x)]

12 | 1/2

+ : . L.
Y 7 i1s a homogenous function of degree — in x and y as

6
-y
proved below. Replacing x by tx and y by ty we get :

0! 2 ) _t1/6[X1/2 +y1/2}
(103 —(1y)!3 t1/3()(1/3 _y1/3) x1/3 4 y1/3

8



Activity 1 : Find the degree of homogenous functions.

L WALy
(i) z= RIENNE

x4+y4

X-y

(i) z=

Euler’s Theorem on Homogenous Functions

Statement : If u is a homogenous function of degree n in x and y, then

o,
X5 Yy Thu.
Proof : Suppose that uv=x"f(yx) ... (1)

Diff. (1) partially w.r.t. x , we get

0

a_u =nx""(y/x)+x".1'(y/x).(—y/x?)
X

Multiplying by x on both sides, we get

X. % =nx" f(y/x)—x"y.f'(y/x) L. (2)

Diff. (2) partially w.r.t. y , we get

ou
8_y =x"1"(y/x).(1/x)

Multiplying by y on both sides, we get

ou
y. a_y ="y f'(y/x) L 3)

Adding corresponding sides of equations (2) and (3), we get

ou @_ ,
X.&-i-y. oy =n.x" f (y/x)



Hence x. @+y. & =n.u

Oox oy
Example

1. If u=tan*1i, then apply Euler’s theorem to prove that

Ty

x.@+y.@= Yasin2u
ox oy
Xty X+y
Sol. u=tan' ——, = tanu=———==2 (Say)
Ty Ty
X+y
= z=tan u and 7=—F——=
Ty
X [1 + (y/x)]

X+y

Now Z:m, = Z:X1/2[1+\/§/X]

= z=x"[A function of (y/x)]
= z is a homogenous function of degree '2 in x and y, so by Euler’s

theorem, we get :

2
X.ax yay 2Z, ut z=tan u

0 0 1
o +y. oo ==
= X ox (tan u)+y. By (tan u) > (tan u)

10



Dividing by sec’u on both sides, we get

ou Ou 1(sinu) 1

X—+y L~ =T
OX yay 2 secZ u

coS u

1 sinu 2(;05211 1 .
=— —X =—sin 2u
4 cosu 1 4

ou 1 |
Hence x. u +y. X sin 2u
ox ~ oy 4

4 4
x4 —
2. If u=log x_y then apply Euler’s theorem to show that
0
x.@—i-y.—u:&
ox oy
4y x4 —y
Sol. Here u=log = =e"
X=y X—y
4 4
Let ol =e¢'=z,
Xy
4 4
then z=e*, =27
X-y

REREE IERN
Now z= x—;yr - X[1_(y/x)]

= z=x’ [A function of (y/x)].

This shows that z is a homogenous function of degree 3 in x and v,
so by Euler’s theorem, we get

11



X. %+y. s =3z Put z=e"

ox = Oy
i LAWE 2 u_3 4
= X (@)t 5 (€)73()

ou ou
= x(e%) x +y(e") 8_y =3e".

Dividing by e" on both sides, we get

which is the required result to be proved.
3. Verify Euler’s Theorem for the function u=e "

Sol. Here uy=e > . (1)

1

= u=x"| ¢ (¥/%) | which shows that u is a homogenous function of

degree 0 in x and y, so by Euler’s theorem, we get

= X_+y8_y:0 ....... (2)

Diff equation (1) on both side partially w.r.t. x, we get

12



ou__1 —xy
Ox y

Multiplying by x on both side, we get
ou X —xly
————e
X ox Yy
Diff. equation (1) on both side partially w.r.t. y, we get
ou_ X -xly
oy y2

Multiplying on both side by y, we get

Adding corresponding sides of equations (3) and (4), we get

ou ou

—_— vy =
X@x yay 0

which is the same result as obtained by Euler’s theorem in equation
(2). This completes the verification of Euler’s theorem.

4. Verify Euler’s Theorem for the function :

, 4 L V4
~ 5,15

x1/4[1+(y/x)1/4}

Sol. Here Z=
T ()

13



= Z=x"[A function of (y/x)]

= Z is a homogenous function of degree 120 in x and y, so by Euler’s

theorem, we get

a oz
+y—=— ----- (1)

ax ay 20
Put D 1=X1/4+y”4 and D2=X1/5+y1/5

A1

Then = 5

Diff. on b.s.p.w.r.t. x

We get
1.-3/4 4/5
%Z Ao.—X Aq{.—X
ox (A2)?

Multiplying by x on both sides, we get

X,%:%[lAngd' —Aq x1/5} ...... (2)
ox A5 4

Similarly by inter-changing x and y we get

111
g o [ agyV4 - A1y1/5} ...... 3)
dy A

Adding corresponding sides of equations (2) and (3),

we get

x.%+y.%=i[4 Az( V4, 1/4)_%A1 (X1/5+y1/5ﬂ

14



1 . . .
= X.—+y.—=_,-7 which is same as the result obtained by Euler’s

Theorem in equation (1).

This complets the verification of Euler’s Theorem.

Activity 1

Use Euler’s Theorem to prove that x.%er.%:nz, where z =x" log (y/x)
X y

Activity 2

Verify Euler’s Theorem for functions

12 13
a) 2= 93 _ RE

Xy
X+y

b) Z=

Activity 3

If V= cos 1~ then show that x. ey, o =14 cot V
= COS X+ﬁ,tensowtatx.ax y.ay——zcot

Exercises

If u=f(y/x), then show that x, 1y, =
a) u=f(y/x), then show that X oY oy

15



o X2ty ou N ou _
b) If u=sin oy then show that x. x Yoy tan u
—(y2 2 2\ ou —_— au
c) If u=(x*+y*+z*)", then show that X o ay-i-z —u
Exercises
2
ocu 1
1. If u=tan™ Xy then prove that =

ox oy (1 + x2 + yz) 2

\/1+x2 +y2 ,

ou
2. If u=log (tan x+tan y), then prove that sin 2x +s1n 2y. = 2y =2

Exercise

Verify Euler’s Theorem for u=,/x2 ; y2

16



B.A. Semester-I
Unit-I MATHEMATICS Lesson No.-2

Prof. Vijay Rattan
(M.A.M. College, Jammu)

Objectives
To read the behaviour of the curve.
Structure
1) Total derivatives
i1) Double points
1i1) Convexity and concavity of a curve
Introduction

In this lesson we shall learn about the total derivatives of composite
functions. Finding of nature and position of double points on the given
curve. We shall also find the intervals of convexity and concavity on a
curve besides the points of inflexion on the curve.

Composite Functions and Total Derivative (Def.)

If u is given to be a function of the two variables x and y and further
x and y are functions of a variable t, then u is called a composite function
of the variable t.

Therefore the relations u=f(x, y); x=4¢(t); y=y(t) defines u as a

. . du . o
composite function of t and d—l: is called total derivative of u w.r. to t.

17



. du oudx oud
Mathematically ook dt 6_yd_¥

Formulae involving total derivative

1. If u=fi h i is a functi fx, th %—@vL@d—y
. u=f(x, y) where y=g(x) i.e. y is a function of x, then ax _ox "oy dx

_ o), xe du_du dx udy
2. If uv=f(x, y) where y=g(t), x=h(t) then ot o at T 2y dt

3. If uv=f(x, y), where x= ¢(r, s), y= y(r, s)

ou ou ox Ou gy
—_—— —4— 2
Then or ox or 0y or

du_ou ax  ou dy

—_—— —+—
and 0s  ox'0s ' 0y 0s

Example

1. Find the total derivative of u w.r.to t when u=xy*+x%y, where x=at?,

y=2at
Sol. u=xy*+x’y  x=at’ y=2at

u_ u_ , dx_ dy _
= 57 +2xy, ay—2xy+x gt =2at ot =2a

U 1 ﬂ—@d_x_i_@ﬂ t
sing dt ox dt oy dt’ we ge

= +2xy)(2at)H(2xy+x)(2a)

Putting values of x and y, we get

% —a[ {4a2C+2(at?)(2at) } t+ {2(at)(2at)+a’t*) ]

=2a[4a’t’+4a’t*+4a’t>+a’t?]

18



d
= — =Da[4a’t*+8a’t’+a’t*]

— 3 ) a33[5+8] Ans.

dt
2. If z=f(x, y) where x=e"+e "V, y=e¢ "-e" then show that
0z 0z 0z 0z
—_—— — X__y._
ou ov OX oy
Sol. z=f(x, y), x=e'te ¥, y=e '—
OX _u X _ v ﬂ_ u a_Y_ \4
u Sy S S ©
Q 0z 8x+az oy
Using the equation, 5 =72 7, oy ou We get
0z —u
— +
Yo ( ) ( e ) (1)
gain using equation, =7 .20+ .50 we ge
%_g —V _,’_% \% 2
v o (=) ay(—e ) (2)

Subtracting (2) from (1), we get

0z 0z _0z [y, v, 9Z _u v
ou ov  ox & e }_5}’(6 )

=Z (0-5)

0z 0z oz oz

Hence w o X Yoy

19



3. If w=f(x, y), x=r cos 6, y= r sin O then show that

() 205

or 00 r
Sol. w= (X, y) X=r cos 0, y=r sin 0
X _ X o _ oy
= cos 0, oo T sin 0, o sin O, 59 cos 0

or

sing equation == .o 5T, We ge

%V: _w (cos 9)+— (sin 0)

Acai ) . ow _ow ox ow ow oy ¢
gain using equation —=—" - 8y 590 We ge

Z_ng_( —r sin 9)+[ j(r cos 0)

Dividing by r on both side, we get
1w ow . ow
a—x(sm 0)+ o (cos 0)

Squaring and adding equations. (1) and (2), we get
2

2 2 2
ow 1 (ow ow oW .
) 2 (S 5 covovsim oy y) (sin” 0 1 cos”0)

B e £ R =1

2 2 2 2
ow 1 (awj _(aw) (awj - > o
Hence (—ar) +r2 20) =\ o oy (. sin® B+cos”* 0=1)

20



(2 (2 (22 ince -
o) T2 la) “\ad Ty (Smee w = 1)
Activity 1

Find the differential coefficient of Z=x?y with respect to x when x
and y are connected by the relation x*txy+y*=1

Activity 2
Find the total derivative of u with respect to t, when u=e*sin y and x=log t, y=t>.
Activity 3
) dy d2y )
Find ax and d_ , when x and y are connected by the relation :
X
x*+y’—3axy=0
Double Points

Def. A point P(x, y) on a curve y=f(x) is called a double point if two
branches of the curve pass through it.

There are in general two tangents at a double point which may real
and distinct or real and coincident or imaginary.

Classification of Double Points

R
Node (x, ),

P(x,y)

Fig. (i) Fig. (iii)



There are three kinds of double points.

(a) Node : It is a point on the curve through which two pass two real
branches of the curve and the two tangents at which are real and distinct.
As shown above in fig. (i) P(x, y) is a node.

(b) Cusp : A point on the curve through which two real branches of the
curve pass and the two tangents at which are real and coincident is called
a cusp. As shown above in fig. (ii)) Q (x,, y,) and Q. (x,, y,) are both
cusps.

(c) Conjugate point : A conjugate point or an isolated point on a curve
1s a point in the neighbourhood (nbd.) of which there is no other real
point of the curve.

The two tangents at conjugate point are generally imaginary but
some time, they may be real.

Art.  Show that the necessary and sufficient conditions for any point
(x, y) on f(x, y)=0, be a multiple point are that fx(x, y)=0 and fy(x, y)=0

Proof : The equation of the curve is f(x, y)=0

Diff. on both sides of (1) with respect to x keeping y as a function
of x we get

of of dy
Ty w0 )
dy . . .
where d_:: gives the slope of the tangent at the point P(x, y). If P(x, y) i1s a

multiple point, then there must be at least two tangents which may be real,

.. . . d
coincident or imaginary. Thus d—i must have at least two values at P(x, y). But

. . . d . .
(2) 1s a first degree equation in d—i and 1s satisfied by at least two values of

d . . o — of ot
d—i which is possible only if it becomes an identity. Thus a—x=0 and a—y=0.
22



Also (x, y) lies on the curve f(x, y)=0

The necessary and sufficient conditions for any point (X, y) on the

: : f of
curve f(x, y)=0 to be a multiple point are Z—XZO and a—yZO

i.e. fx(x, y)=0 and fy(x, y)=0
Hence the result.
Working rule for finding nature and position of double points :

Let f(x, y)=0 be the equation of given curve.

| ping 2F 2 021 %1 24 o2 f
- PG50 oy axz’ayz’éxay ot oy ox
: . of of . :
2. Solutions of the equations &:0 and EZO in the form (x, y) which

satisfy f(x, y)=0 gives the position of double points.

3. A point (double) is a node, cusp or conjugate point according as

2
21" (22 (25] |
dyox) Loy2) | ox2 <0 respectively.

2¢ 821
OXoy oyox'

Note : For double pts.

Example

Prove that the curve y*=(x—a)*(x—b) has at x=a, a node if a>b, cusp
if a=b and a conjugate pt. if a<b.

Sol. y*=(x—a)*(x—b)

23



= (x-a)’(x-b)-y*=0
Let f(x, y)=(x—a)*(x—b)—y?

& =2(x-a)(x-b)+(x-a)’ =(x-a)[2(x~b)+(x-a)]
of of ot
= a—x—(x—a)(3x—2b—a), 2y =2y, oy2 =2
O | (x2bay(xa) 3
o —1.(2X—4ZDb—a X—a).
&2
% xdazd, Lo
Tl VT e

For double pts. =0 and 220 gi
or double pts. — =0 an oy 0 give
(x—a)(3x—2b-a)=0 and —2y=0

= x—a=0 or 3x—2b—a=0 and y=0

a+2b
3

= Xx=a, X= and y=0

a+2b
3

Thus possible double points are (a, 0) and ( , 0). But only

(a, 0) lie on the curve.

At (a, 0)
21V (o2 a%
5}’7 - x> 6y2
=(0)’-[6x—4a-2b][-2a] Put x=a

24



=0+2a(6a—4a—2b)=4(a—b)

Hence at x=a, there is node if 4(a—b)>0 or if a—b>0, or if a>b.
At x=a, there is a cusp if 4(a—b)=0

a-b=0, or if a=b

At x=a, there is a conjugate point if

4(a-b)<0 or if a-b<0 or if a<b

2. Prove that only singular point on the curve (y-b)?=(x—a)’ is a cusp and
find its co-ordinates.
Sol. The given curve is (x—a)’~(y—b)*=0
Let f(x, y)=(x-a)’~(y-b)*=0
9L 3(x-ay g, g
ax_ (X_a) s 5},__ (y_ )7 X2 - (X_a)
o _ f _,
oxdy 6y2
: of _ of .
For double points E_O and dy =0 give
3(x—a)*=0 and —2(y-b)=0
= x—a=0 or x=a and y-b=0, = y=b
Therefore (a, b) is the only double point which also lies on given
curve.
At (a, b)

2
0t {621"] {azf]
0x0y ox2) \ay?

25



=(0)*—[6(x—a)][-2] Put x=a
=12(a—a)=0
Hence (a, b) is a cusp on the given curve.

3. Show that the origin is a node, cusp or a conjugate point on the curve
y*=ax>+bx? according as a > = < 0 respectively.

Sol. Let f(x, y) = ax*tbx*-y*=0

Then 2 axiabet, ey L,
cn 5)(_ ax X5, 5y__ \A 5},2 =
2 2
o =2at6bx, —1=0
O x 0x0y
double points =0 and =0
For double points ox O and 50=
give x(2a+3bx)=0 P x=0, Xx=-2a/3b

and —2y=0 b y=0
But (0, 0) is the only double points.
At (0, 0)

2
0t 2%t | [ o2t
oxdy) ox2) loy?

= (0)~(2a+6bx)(-2) Put x=0

=4a
Hence (0, 0) is a node if 4a>0 or if a>0
(0, 0) is a cusp if 4a=0, or if a=0
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(0, 0) is a conjugate pt. if 4a<0 or if a<0.
Activity 1

Examine the existence and nature of double points on the curve
x(x+y?)=ay’
Activity 2

Show that the origin is a cusp on the curve x*-ax’y+axy*+a’y’=0.
Activity 3

Find the nature of double points on the curve a’y’=x*(2x>-3a?).
Convexity and Concavity : Consider the curve y=f(x) in the interval [a,
b]. Let it be continuous and possess tangents at every point in (a, b).

Draw a tangent to the curve at any pt. P(c, f(c)) on the curve which is
not || y—axis.

If portion of the curve on both sides of P however small it may be,
lies above the tangent at P, then we say curve is convex downwords or
concave upwards at P.

If a portion of the curve on both sides of P*, however small it may
be lies below the tangent at P, * then we say curve is concave downwards
or convex upwords at P’.

Points of inflexion : A point on a curve at which curve changes from
convexity to concavity or vice versa is called point of inflexion. The
following figures depict the above concepts.

Y Y 9 Y
N4 o N
ng\ / Q_R\_\
A
C i X=D
O 'x=a x=b x ©O x=ax=c X O N
Fig. 1 Fig. 2 Fig. 3



2
In Fig (1) curve is concave upwards at P(x, y) and satisfies oy >0.

6x2

2
In Fig. (i1) curve is convex upwards at P*(x, y) and satisfies oy <0.

8x2

2
In Fig. (ii1)) R(x, y) is a pt. of inflexion and satisfies 6—3120.
ox

1. Find the values of a and b, so that the curve y=ax*+3bx* has a point
of inflexion at (-1, 2).

Sol. y=ax*+3bx?

has a point of inflexion at (-1, 2), so (1) is satisfied by it
= 2=a(-1)*+3b(-1)?

= 2=-at3b
= a=3b-2 (2)
Diff. equation (1) on both sides w.r.t. x we get
dv?
=2 = 3ax> + 6bx =  “=6ax+6b
dx dx

2

d
Now for double points d—}21= 0
X

= 6ax +6b=0, Putx= -1
= 6a(-1)+6b=0, = 6a=6b,= b=a.
Putting b =a in 2. we get
b=3b-2, =2b=2

Henceb=1, = a=1.
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2. Show that the points of inflexion of the curve y* = (x —a)? (x —b) lie on 3
x+a=4b.

Solution :- Given equationis y> =(x —a)? (x—b).
Taking Sq. root of b.s. we gety=(x—a) (x —b”
dy !

e R S PR

2( x—b)2 +(x—a) :g: 3x—a—2b

: b
¥x—b dx  2Jx-b

dy _3X-az2b
dx 2/x—b °’ 1fferentiate again w.r.t. X

1
& [2«/){ —b](3)— Gx—a— 2b){2 zm}

dx? 4(x—b)

_ ay 6(@)2 —(3x—a—2b)

dx2 4(x—b)WVx—b

d’y 3x-4b+a
2 3
dx*  4x—b) 2

2
For points of inflexion —}2/ =0

dx
3x—-4b+a
4(x—b)% , =3x-4b+a=0

Hence pt. of inflexion lie on 3x + a=4b
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Activity 1 :

Prove that the curve

1) y=e*is concave upwards every where.

i1) y =log x is convex upwards every where
Activity 2 :

Find the points of inflexion on the curve

x = (log y)’

Activity 3 :

Find the intervals of convexity and concavity for the curve

y=x>-3x>-9x +9
Books Recommended for Studying

1) Differential calculus by K.C. Saxena and K.C. Gupta

i1) A text book of calculus by Chopra and Kochhar.
ii1) A text book of calculus by B.L. Raina and Ram Krishan.
1v) The spectrum of calculus by R.L. Sharma & M.S. Baloria.
v) Hand book of Mathematical formulae by V.N. Indurkar.
vi) Advanced Diff. Calculus by Goyal and Gupta

vii) College Calculus by Larson & Hostetles.

viil) Elements of Differential and by Granville.

integral calculus

ix) Differential Calculus by D.M. & Gupta.
x) Mathematics Quiz by M.G. Wells.
xi) Teach yourself calculus by P. Abbott.
xi1) Differential Calculus by Saxena and Kapoor.
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B.A. Semester-I
Unit-11 MATHEMATICS Lesson No.-3

Prof. Vijay Rattan
(M.AM. College Jammu)

Objective
To find envelopes and asymptotes to curves.

Structure

(1) Family of curves and Parameters.

(i1) Asymptotes parallel to axes.
(i11) Oblique asymptotes.
(iv) Envelopes.
Introductions

Above concepts involve the developing the knowledge of family of
curves having one and two parameters and then finding the envelopes of
some selected family of curves such as tangents to OS, parabola, ellipse
and hyperbola.

We shall also learn about the infinite branches of the curves and then
finding asymptotes which are parallel to co-ordinate axes and non parallel
or oblique asymptotes to the infinite branches of the curves. It should be
noted that a 3rd degree curve in x and y can have at the most three
asymptotes.

Family of Curves

Consider the circle (x—a)>+y*=a? having centre at (o,0) on x-axis and
radius (fixed) a. If we give different values to a keeping 'a' fixed, then we get
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a system of circles whose centres lie on different points on x-axis. This
system of circles is called a family of circles and a is called the parameter.

A system of curves f(x, y, a)=0, where a is the parameter is called a
family of curves.

Def : (Envelope). The envelope of a family of curves is the locus of the
limiting positions of the point of intersection of any two consecutive members
of the family when one of them tends to coincide with the others which is
kept fixed.

Method of finding envelope of f(x, y, a) = 0,

where o is the parameter.
Equation of given family of curves is

fx,yy=0 . (1)

Diff (i) partially w.r.t. parameter o, we get.
of 0 .
Z (11)

Eleminating a from (i) and (ii) we get equation of envelope.
Envelopes of some special curves

(a) If AcosO + B sinO = ¢, where A, B and C are functions of x and y only
and O is the parameters, then equation of envelope is A*+B*=C>.

Proof A cos6 +Bsm6=C ... (1)
Diff on b. sides partially w.r.t. 6 we get
A (-Sin®) + B (Cos®) =0 L (i)
Squaring and adding corresponding sides of above two equations we get
A?[(CosB)* + (-SinB)?] + B2 [(SinO)* + (CosO)’] = C* + O

= A?()+ B> () =C? or A?+B>=C?is the required equation of the
envelope.
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(b) Equation of a family of curves which is quadratic in the parameters is
Discriminant=0.

PF. Let Ao’+Bat+C = 0 be the family of curves where o is the parameter.
Here A, B, and C are functions of x and y only.

Ao*+BotC=0 (i)
Diff (i) partially w.r.t. o we get

-B
+B = =—— ii
2Aa+tB =0, = A (11)

Eleminating a from (i) and (ii) we get

(—Bj ? —B
A E + B A +C=0
Multiplying by 4A on both sides we get
B* -2B* + 4AC =0 or -B*+4AC =0

B>4AC =0 Or Discriminant = 0 in equation of the envelope.

Example (1) Find the envelope of the family of st lines y=mx +a /1, 42,

where m is the parameter.

Solution : y=mx *a /{1, 2 e (1) is given family of straight lines.

= (ymx) =% J11m?- a

Squaring on both sides, we get
m’x*-2mny + y* = a? (1+m)?
= (x*-a%) m’> - 2mxy + (y>a’)=0 ... (i)
which is quadratic in the parameters m.

Hence equation of the envelope is Discriminant = 0
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= [2xy] - 4 (x—a) (y—a®) = 0

Dividing by 4 on both sides, we get
X2y —(x%y? —a’x*—a’y*+a*) = 0

= axtaly’—a*'=0 -~

X' (0,0) X
Dividing by a? on both sides we get

x*+y*-a?=0 or x*y*=a’

which is reqd. = n of the envelope. It is a
circle having centre at (0,0) and radius a.
The given family of straight lines are
tangents to the circle.

2 b?
Example (2) Find the envelope of the family of curves 2 Cos® —7 Sin
X

0 = c where 0 is the parameter.

b2
Solution :—The given family of curves is (a*x) CosO — ?SinG =C ...(1)

Diff on both sides partially w.r.t. 6 we get

a’ b2
+ ) (Sinb) — 7 (Cos®) =0 . (11)
Squaring and adding above two equations, we get

) 2
a
;j [(Cos®) + (-Sind)’] + (b2/y)? [Sin*+Cos?0] = ¢*+0

2
a

2
= _j (1) + (b¥y)* (1) = C

X
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4 4
a b ) .
Hence — Tt = ¢’ is equation of envelope.
X y

a b
Example (3) Find the envelope of the family of curves ~_ : Y-
cosa  sina

a’-b?, where a is the parameter.

a b
Solution : ——— 'y = a’b’
cosa  sino
or (ax). Sec a — (by). cosec a0 = a*>b*> .. (1)

Diferentiating on both sides partially w.r.t. a we get

= (ax). Sec a tan a — (by) (—Cosec a. Cot a) = 0

1 Sina 1 Cosa

= — (by).

= (ax).

Cosa Cosa Sinoa Sina

N Sin’a _ —by - ( Sinocj3 _ —(by) P
Cos’a  ax Cosa (ax) \/(ax)2/3 +(by)2/3
_(by)1/3
_ _ b3
tan® o = (by) ,—>tano = (bY)l 900/
(ax) (aX)A 0 (ax)"3 M

Put A = \/(ax)% n (by)%

A —-A
Sec a = —y and Cosec o = —y
(ax)”3 (by)/3

Putting the values of Sec « and Cosec « in (i), we get
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(ax) — (by) x = a’>-b?
(aX)/

= A[(@ax)*® + (by)**] = a’-b?
= A[A*] =a*b? or A= (a’>-b?)
Raising power 2/3 on both sides we get
[AY]?? = (a>b?)*3, = A?=(a>b?)*?
Hence (ax)?? + (by)?® = (a>-b)?? is the equation of the envelope.
Activity (1) Find the envelope of family of curves
() (x-a)’ =y’ =4a
(i) (x—a)’+y* =4
where a is the parameter

Activity (2). Find the envelope of family of curves x Cosf + Sin6= Sin 6 Cos
0. Where 0O 1s the parameter.

a
Activity (3) Find the equation of envelope of the family of tangents y:mx-i-;

to the parabola where m is a parameter.
Envelope of two parameter family of curves :—

Let f(x, y, a, B) = 0 be a two parameter family of curves where a and
b are parameters connected by the relation f (o, B)=0 ... (I1)

Diff. these two equations partially with respect to a keeping b as a
function of 0, we get

8f+_ B
oo 0P oo
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o, 00 B _,
o OBf Oa

Eleminating a and b from above four equations we get equation of the

envelope.

Example (1) Find the equation of envelope of the family of straight lines

X .
— +% = 1 where a and b are parameters connected by the relation ab=c?.
a

Solution : §+% =lorxa'tyb!'=1-—)
ab=c? —(1I)
Diff (I) and (II) partially w.r.t. a keeping b as a function of a.

1 -2 + 1 b72 ﬁ — O __X:l @
X'(_ )a Y'(_ )' N da - 2 :> 3.2 b2 'da
db b’
O Ga a2y —(IID)
b+all g b P —(V)
. a'da ,:>a.da —b, or da .

From equations (III) and (IV), we get

S

Using ratio and proportion, we get

/ / / 4 using equation (1), we get

1+1

—b2X — x

SN
azy 2’ a b

37



, => a=2x

N |~

Also Y=1 5 b
s0 =5, = b2y

Putting values of a and b in (II), we get (2x) (2y) = C?
= 4xy = C? is = n of envelope

Activity (1) Find the envelope of the family of ellipses x*/a* + y*/b* = 1,
where parameters a and b are connected by the relation a*+b*= C.

Activity (2). Find the envelope of the family of parabolas (x/a)"? + (y/b)'?
= 1, where parameters a and b are connected by the relation ab=C.

Asymptotes

Infinite Branches of a curve. If in an equation y=f(x) y has two or more
values for every value of x then we suppose that in such a case we are given
two or more distinct functions. But generally we regard the curves
corresponding to these functions, not as different curves but as different
branches of one curve.

2 2
Consider the hyperbola X—z—% =1
a

Solving for y we gety = + b x*—a?.
a

Here for every value of x, y has two values and as x — + o, y also tends
to £+ oc. Thus hyperbola has two infinite branches as shown in adjoining fig.

b .
Here y=t—x are two two oblique asymptotes to hyperbola.
a
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Asymptote (Def.) A straight line at a finite
distance from the origin, is said to be an
asymptote of an infinite branch of a curve,

\ /
if the perpendicular distance of a point Py X
on that branch from the straight line tends »

»
to zero as P tends to infinity along the v ot

branch of the curve.

Asymptotes parallel to co-ordinate axces :—

If equation of the curve is of degree n in x and y where x" (y") is absent
in the equation, then coefficient of next higher power of x(y) present in the
equation when equated to zero gives asymptote or asymptotes parallel to x-
axis (y-axis) provided this coefficient is not merely a constant or gives rise
to imaginary lines.

Example (1) Find the asymptotes || to axes for the curve. xy*+x’y—9* = 0.

Solution : xy*+x*y-9*=0 . (1)

If is of degree 4 in x and y in which both x* and y* are absent.
Coefficient of x*=y, so y=0 is asymptote parallel to x-axis.
Coeff. of y° = x, so x = 0 is asymptote || x-axis.

Example (2) Find asymptotes parallel to axes for the curves (a) x?y* = 9

(x*+y?), (b) y=(x-1)*

Solution : (a) The given equation is x?y*-9x*-9y*=0 ... (1)
Which is of degree 4 in x and y in which both x* and y* are absent.
Coeff. of x>=y*-9, \ y*-9=0 or y = + 3 are two asymptotes || x-axis.
Coeff. of y? = x*-9, so x>-9=0, or x=+3 are two asymptotes || y—axis.

Solution : (b) y’ = (x-1) or y* = x* — 2x+1 b y>x* + 2x — 1 = 0 is of

degree 3 in x and y in which y? is present, so no asymptotes || to>y—axis.

Although x3 is absent but coefficient of x* is —1 which is constant. Hence
no asymptote || to x-axis as well.
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Activity (1) Find asymptotes parallel to axes for the curves.
(@) x%y?=a’ (x¥~y) (b) (x**ty?) x=ay’
(b) y—xy*=x>+1 (d) x*y*+y*=1
Oblique asymptotes :—An asymptote to a curve which is not parallel to any
of the two co-ordinate axes is called on oblique asymptote.
Method of finding oblique asymptotes :(—
(1) Let y=mx+c be an oblique asymptote to a 3rd degree curve in x and y.
fx,yy=0 L (1)
(2) Putx=I1, y=m in 3rd, 2nd and 1st degree terms in L.H.S. of (1) seprately.

Let the expressions obtained be respectively called as ¢,(m), ¢,(m) and ¢ (m).

(3) The values of m for y=mx-+c are the roots of equation ¢,(m)=0.

_éz (m)
¢, (m)

(4) For non repeated values of m, ¢ is given by c=

(5) Forrepeated roots of ¢,(m) = 0, ¢ is given by

2
Cz—! ¢" (m) + . ' (m) + ¢ (m)=0

Putting the corresponding values of m and ¢ in y=mx+c we get the
equations of asymptotes

Example (1) Find the asymptotes of the curve.
3xH2xPy-Txy* 2y —14xy+7y*+4x+5y=0
Solution : Let y=mx+c be an oblique asymptote. Put, x=1, y=m in 3rd and
2nd degree terms on the L.H.S. of (1) we get
¢,(m) = 32m-7m’+2m’ ; ¢, (m) = —14m+7m?
Now ¢',(m) = 2-14m+6m”.
For values of m, ¢,(m)=0 gives 2m’~7m*+2m+3=0
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Here m=1 is a root, so by synthetic division we get

2 7 2 3 (1
2 =5 3
5 3 0

Reduced equation is 2m*-5m-3=0

= 2m>~6m + m-3 =0 , = 2m(m-3) + 1.(m-3) =0

1
= (m3) 2m+l)=0 , = m=3, 5> 1

~14 2
Now C=—¢,(m)/¢,(m) , = C= — [ mm ]

[2—14m+6m2]

[-14+7] -7

For m=1, C= —m 6

—[-42+63] 9] -3
For m=3, C = [2_42+54] , = C= H=7
[7+7/4]  —(35/4) 5

For m=—Y%, C=[2+7+6/4] “(a22) = T4

Therefore three asymptotes are y=(1)x+(—7/6)
y=(3)x+(=5/6) and y=(—1/2)x+(-5/6)
Example (2) Find all asymptotes of the curve x*+x’*y—xy*—y’-3x—y—1=0
Solution : xX*+x’y—xy*y*-3x-y-1=0 .. (1)
Let y=mx+c be an oblique asymptote to (1)

Put x=1, y=m in 3rd, 2nd and 1st degree terms on the L.H.S. of equation (I)
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and the expressions obtained be respectively taken as
¢,(m) = 1+m-m*-m’, ¢, (m) = 0, ¢,(m) = —3-m
¢,(m) = 1-2m-3m’ , ¢" ,(m) = —2-6m, ¢',(m) = 0
For values of m, ¢,(m) = 0 gives
I+m-m?>-m*=0 , = 1.(I1+m)-m?*(1+m) = 0
= (I+m) (1I-m?) =0, = 1+m=0 or 1-m? = 0

= m=1 or m>=1 , = m=+1

—¢p(m) _ 0 0 0

os(m) 1-2m-3m> 1-2-3

For m=1, C=

2
For m =—1 C is obtained from the equation % ¢",(m)+C ¢' (m)+¢,(m) =0

2
= % (-2—6m) + C(0) + (-3-m) = 0 , Put m=1

C2
= o [F26XED] + (3+1) = 0

2
= C7(4)+(—2)=O or C~1=0, = C==1

Thus three asymptotes are y = (1) x+0 ; y=(—1) x+1, y= —x-1
or x-y=0, xty—1=0, x+y+1=0
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B.A. Semester-I
Unit-11 MATHEMATICS Lesson No.-4

Prof. Vijay Rattan,
M.A.M. College, Jammu
Objective : To solve indeterminate limits and trace the curves.
Structure
(1) Tracing of cartesian curves.
(11) L-Hospital Rule and its applications :
Introduction

In the chapter of tracing of certesian curves we shall find the symmetry
of the curves about x-axis, y-axis, about the lines y=x, y=—x. We shall also
find intersection of curves with axes, double points on the curve. We shall
also find asymptotes and region of the curve.We will not find any other
points on the curves.

L-Hospital rule is used to evaluate special types of limits which are in

0 oo
6, —, 0.00, 00-00, 1*, 0*, 0°, o0® or oo™ form. Such limits cannot be evaluated
o0
without the application of this rule.
Method for tracing of cartesian curves

Symmetry (1) If equation of given curve remains unchanged when y is
changed to —y, then the curve is symmetrical about x-axis.

(2) If equation of the curve remains unchanged when x is changed to—
X, then the curve is symmetrical about y-axis.
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(3) If equation of the curve remains unchanged when x and y are inter
changed, then curve is symmetrical about the line y=x.

(4) If equation of the curve remains unchanged x and y are changed to
—x and —y respectively then the curve is symmetrical in opposite quadrants.

ORIGIN : Given curve passes through the origin if x=0 and y=0 satisfy its
equation. Such curve does not contain a constant term. If the curve passes
through the origin then find tangents at the origin by equating lowest degree
terms (present in the equation) to zero.

The origin will be a node, cusp or conjugate point according as two
tangents are real and distinct, coincident or imaginary.

AXES : Find the points of intersection of the given curve with axes by
solving it with equations x=0 and y=0.

ASYMPTOTES : Find the asymptotes of the given curve if any. These
help in tracing of curve.

REGION : Find out if there is any region in which the curve lies or
does not lie. This is done by solving for y (or for x as the case may be). Also
find the values of x (y) which makes y (x) imaginary.

POINTS OF INFLEXION : Find the points of inflexion and double pts
on the curve if any. Also find nature of double pts on it.

Then we draw a rough sketch of the curve.
Example (1) Trace the curve y* (a+x) = x* (3a—X)
Solution : The equation of the curve is y*(at+x) = x* (3a—X) ..... (1)

(1) The curve is symmetrical about x-axis because it contains only even
powers of y.

(2) The curve passes through the origin (0, 0).
From (1), ay*+xy*-3ax*+x*=0 ... (i1)
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Tangents at origin are given by
ay’—3ax’=(0 = y*=3x>
= y== ,/3xare two real and distinct tangents at the origin. Hence origin
is a node on the given curve.

(3) From equation (i1) which is 3rd degree in x and y, the term containing
y? is absent. Coefficient of y* = x+a.

x +a=0 or x=a is an asymptote to the curve parallel to y-axis.
(4) Putting y = 0 in equation (i) we get

x> (3ax)=0, = x=0, 0, 3a.

Thus curve meets x-axis at (0, 0) and (3a, 0)

Put x=0 in (i), then y*(at0) = 0, = y =10

So curve meets y-axis only at (0, 0)

The curve has a loop between x=0 and x=3a.

(5) Region : From given equation (i)

,  x°(3a-x) 3a—x
y=——"", 2y=%x
a+X a+Xx

Now if 3a—x < 0 , y 1is
imaginary is if x > 3a, then y is
imaginary, so no part of the curve
lies beyond the line x=3a.

3a

7

o

X

=0

X+a:

Also if atx < 0, then y is (3a, 0)
imaginary 1.e. if x<-a, then y is X X

imaginary, so curve does not lie on
left side of line x=—a. Hence shape
of the curve is as shown below. s
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Example (2) Trace the cartesian curve x>/3+y?/3 = a2/

Solution : The equation of curve is x**+y?? = a??

E 2/3
Dividing by a*? on both sides we get (gj + (Xj =1 ..(»1)

a
I. Since (i) contains only even powers of both x and y, so it is symmetrical
about both axes.

II. Equation of the curve does not change when x and y are inter changed or
when x and y are changed to —x and —y respectively, so the curve is also
symmetrical about the line y=x and in opposite quardrants also.

IMI. The curve does not pass through the origin (0,0).
2

IV. Puttingy=01n 1 we get (§j3 =1
a

2 2
- (5) =<1)3,:»(5j ==k
a a a

Hence curve meets x—axis at (a,0), (—a, 0). Similarly by taking x =0, we
find the curve meets y—aseis at (0,a) and (0,—a).

V. Region : From equation I we get

HERCR

Therefore if —a > x > a, then y is Y .
imaginary so no part of the curve lies beyond o B b
thelinesx=aandx=—a. By symmetryno part ol
of the curve lie beyond the lines y = a and (a, % . Y @0
y=-a. Hence the curve lies withinasquare  x & -“1w0.0) A X
bounded by four straight lines x = a, x =—a, WD\ /
y=a,y=-a. O“efc’j’/ B | (0.2

VI. The curve has no asymptotes, no double i .

pts and no point of inflexion. Hence shape
of the curve is as shown in the adjoining figure.
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Example 3. Trace the cartesian curve y* (a> — x?) =x*.
Solution :  The equation of the curve is y? (a>—x*)=x* .. (1)

1. TItis symmetrical about both axes as it contains only even powers of x and
y. The curve is symmetrical in opposite quadrants as its = x does not change
when x and y are changed to —x and —y respectively.

2. The curve passes through the origin (0,0) and tangents at origin are given
bya’y*=0

= y*=0,Soy=0 andy= 0 are two real and coincident tangents at the
origin. Hence origin is a cusp on the curve.

3. Asy*is absent in 4th degree = n and coefficient of y> = a> — x?

2

. a’—x*=0orx = a, X =—a are two asymptotes to the curve.

4
X
4. From=nwe gety’= ———

X
= y==% T, 5, This shows that x can not exceed a or decrease from —a,
a‘—x

otherwise y is imaginary.

Hence curve does not lie on the right side of
x = a and on the left side of x = —a.

The branches of the curve tend to be infinite
when x is very close to a or —a. Hence the shape
of the curve is as shown in the adjoining figure.

Activity 1 Trace the cartesian curve y>=x (x+1)%.. X

Activity 2 Trace the parabola y*> =4 ax

Activity 3  Trace the cartesian curve

y? (a—x) = x? (at+x)
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L - Hospital’s Rule
Def. 1 Let f(x) and g(x) be two functions of x in [a, b] such that
Lt ¢ (x) Xl;t)a g(x)=0 then.

X—a
Lt fix) Lt f(x)
x—>a g(x) T x>a g'(x)

provided the latter limit exists whether

finite or infinite.

Lt _ h Lt fix) _ Lt f(x)
X_)ag(X) e enx—)a g(x) x—>a g'(x)

vided the latter limit exists whether finite or infinite.

2. 1f M fix)=

X—a , pro-

Remarks : 1. If given limit is in cox 0 form or co— oo form, then we first
... 0 o0 .
change it into 0 form or — and then apply L — Hospital rule.
o0

2. Ifgiven limitisin 0%, 0°, 00, 00 or 1 form, then given limit is evaluated
by taking log of both sides.

Lim ¢*—-e™*

Example 1 : Prove that x50 Sinx

9 form
0
Lim ¢ —¢™ e’ =1
Solution : Let 1= x50 S
* andsin0° =0

Using L - Hospital’s rule we get

Lim e*pe™ e04e 141
x>0 cosx cos 0’ 1
Hence 1 =2.

= 1= 2 Q.E.D.

Lim  xe* -log(l+x) |
Example 2 : Prove that X0 2 = A .
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0
0

Lim xe* —log(1+x)

Solution : Let] = X0 2

form

Since log 1 =0and e’ =1, so using L- Hospital rule, we get

X X
Lim X¢& +te'———
L= 1+x ‘% form

x—0 2X

Again using L - Hospital rule, we get

X X X 1 0 0 0
. et +xe +et + 5 e +o0.e +e + 5
= Lim (l+x) _ 1+0)
x—0 2 2
1+0+1+1
Hencel= —— ——=1= ¥ Ans. Q.ED.

Lt (I+x)%—e -1

=—¢e

Example 3. Prove that
x—0 X 2

Lt (1+x)%—e

Solution : Let L =
x—0 X

1
Puty=(1+x)"*, Taking log of both sides, we getlogy = - log (1+x).

e, X Jox,x
= logy=_|¥~ 5 T3 ] = log e

—X X2
= logy=1+ 7+?_ ----- =1+z (say)



X2

Wherez=_7x+?— ............ ,Plogy=1+z

Now y=e!"”, = y=c.e*

:>y:e_1_§+_x + ...... }

Hence 1=

x—0 X

Lt Syt g X T
= 1= x>0 X

1= Lt e{i+£X+ ......... }: e{l+£(0)+..}

x>0

Hencel = > Ans. Q.E.D.
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Lt logtannx _ !

Example 4 : Prove that x>0 log tanx

Lt | log tan nx oc log0 =
Solution :- Letl= T

S g

log tanx

Using L- Hospital’s rule we get

o _
( n j sec’ nx )
Lt tan nx Lt ( nx j(tan x) [ sec nxj

1= -
x—=0 1 2 x — 0\ tan nx X sec? x

.S€C X

tan X

()
Hence l=(1) (1) 1 =1, =>L=1

Since

Lt (tan 0

o jzl and Sec® 0°=1

00

Lt 1
Example 5 : Prove that (_ —cot X) =0
x—>0 \x

Lt (1 . j oc—aC
3 el __CO X
Solution Letl 0 \x form
Lt (1 cosxj Lt (sinx—xcosxj 0
=l= ——— = —— | |=form
x—0\x sinx x—0 Xsinx 0
Lt cosx—1.cosx +Xx.sinx
=1= . ,
x—0 1.sinx + X.cosx
Lt XSinx 0
=>e= . — form
Xx—>0 sinx+xcosx |0
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Lt sinX + X.Cos X Lt sinx+xcos

=L= =1

- .
X —> 0 cosx + cosx — x.sinx

X = 02cosx —xsinx

_O+01) 0 =1=0
T 2D—(0)(0) 2 (+sin0"=0, cos0°=1)

Lt 2 1 -
Example 6: Plrovethatx_)1 21 x-1

Lt ) 1 oc —oC form
Prof: Letl= - 1
x—>1x2-1 x-1 as =
X —> 1_ X2 -1
Lt [ 1-x L -1
=1= _— =
x—)l_-(]-xz) x—>1 1+x
H l=—, = L—_—1
encel=———, 5
- Lt Sin2x+asinx _
Example 7 : If limit, x> 1 iE be finite then find the values of a and
the limit.
Lt Sin2x +asinx 0
Solution : Letl= 3 —form
x—0 X 0

So by L - Hospital rule we get

Lim 2cos 2x+a cos x

1:x—>0 3x2
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Since deno. =3x> =0
when x = 0 and the limit is finite so nuem. = 2 cos0° + a cos0° = 0.

= 2x1 +ax1=0, ba=-2
(Again using L - Hospital rule)
Lim —4 sin2x-a sin x

Now L= = @——M——— (1)
x—0 6x

Againdeno=6x=6x0=0 at x =0

and nuem = —4 sin 2% 0° —a sin 0° = —4x0 —ax0 = 0.

So again apply L - Hospital rule in (i), we get

Lim -8 cos2x-acosx
=50 6

Lo —8¢c0s0° —(=2)cos0’ _ —8><1+2><1:—_6:_1
6 6 6

= L=-1 anda=-2.

Example 8 : Prove that

Lt y o
Sol. Let 1= (1+x)/x ‘oc form.
X —>oc

Lt 1
. logl= —log (1+x)
X—>0o X

Lt log (1+x)

—form
X— o X 0

=logl=

Using L-Hospital rule we get.

1
Lt (1+xj Lt ( ) )
= logl= »=>logl= T+x

x —oc | 7 oI X —>oc
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1 1 |
=logl=—",=logl=—, = logl=—=0
1+ oc oC oC

1
Since —=0, .. logl=0, =>1=¢"=1
oC

Hence value of the given limitis 1

Example : Prove that

, |
Lim (tan X) 42 _ e%

x—>0\ x

Solution : Let 1=

. 1
Lim (tan xj A

x—0

l (tanx)
Le |98,

_ 0
=logl=x-50 x2 which is in 0 form.

Lt 1 ( tan x

2
= —.lo
, then logl X0 <2 2

X

Lt ( X jxseczx—l.tanxi
wlogl = ol lan o/ x2 2x

low]— Lt (])xseczx—tanx
= 10817 x>0 ’ 2X3

‘— form
0

Lt  lsec’x+2xsec’ xtanx — sec” X
-0 6)(2

= logl= «

= logl= — = sec” X

Lt 2xsec’ xtanx 1 Lt ’ (tanx)
x—0 6x° 3 x50
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1 1
= logl= 5(1)2-(1), = 10g1=§

tanx
Hence. L = e% . Since Sec 0°=1,—— > l,asx >0
X

)"

sin x
X

Activity 1  Evaluate the ( as X —oo,

Lt |1 1
Activity 2 Find the value of R 0|:X2 <in? X}

' Lt X 1
Activity 3 Findthe valueof | logx

Exercises : Solve the following limits
Lt 3x+4

D x> V2xZ +5

Lt {ax —l—xloga}

DIV
111) Find the values of a and b so that

Lt  x(I-acosx)+bsinx

1
exists and equals to —.
x—0 ¥ a 3

Lt 3)6 _ 2X

x—0 \/;

V) Lt e*sinx—x-—x
x—0 X3

2
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Lt 2cosx-2+x°

)y o i

Vll) Lt X+X-1vg \1+X)
x—>0 %2

Lt ( X 1 j

Viil) —_
x—>0 \x-1 logx

: Lt

ix) 2x. sin a4
X —>C 2x
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B.A. MATHEMATICS SEMESTER-I
UNIT-III LESSON NO.-5
Dr. Tirth Ram
Dept. of Mathematics,
University of Jammu
CALCULUS OF VECTOR VALUED FUNCTIONS
3.1 Introduction
Throughout this unit it is presumed that students are familiar with vector
calculus already studied in their previous classes.
3.2 Objectives

To study the differentiation and integration of vectors.

@

(i)

(iif)

Some Points to Remember

If Zz:xf+y}+zl€ then |Zz| = x>+ >+ 7 is called modulus

or magnitude of vector a.

Let  and bbe any two vectors then the dot product of a and
b is denoted by ;7 and is defined as

ab = la|lb|cos@,

where 0 is the angle between ¢ and b .

>

Also {i=1=jj=kk,ij=jk=ik=0

Cross product of ¢ and b is denoted by axb and is defined as
axb = |a|b|sin 7,

0 is the angle between a and b, 77 is unit vector _| to both a
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3.3

and b. Also ixi=)xj=kxk=0, ixj=Fk jxk=iand
kxi=],

(v)  Scalar tripple product of vectors ,5,¢ is [a b ¢| = a. (bxc|
Ao [a5) = [¢aB] =[5 ¢a);
[aah]=0
(v) Vector tripple product =ax(bxc).

Differentiation of Vectors Functions of Single Scalar Variable
If to each value of scalar variable ‘t’ in some interval [a, b], there

corresponds, by any law whatsoever, a value of variable vector |, then

F = F(t) is a single valued vector function of scalar variable ‘.

Decomposition of a Vector Functions

Any vector function F (t) can be decomposed as a linear combination of
i, 7.k, So we write

E(t) = £,(0)i + f,(0) ] + fy(0)k

where 1,(2), f, (¢), f,(¢) are scalar function of # and are called components
of F(¢).

Example : F(r) =acos ¢ { +b sint j + 0k, which is of the form

F(t) = £,(0)i + £,(0)] + f(0)F -

Limit of a Vector Function
Definition 3.1 A vector function F(t) is said to tend to a vector / when

ttends ¢, if for any ¢ > (0 (however small), there corresponds a positive
number 0 such that

|F(1)—1|< & wherever 0<|t—c|<&
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and we write
limF(7) = ]
t—c
Continuity

Definition 3.2 A vector function F(t) 1s said to be a continuous at ¢, if
HEO = Fe)

Also IE(t) is said to be a continuous function, if it is continuous for every

value of the interval of definition of the function.
Differentiability

Definition 3.3. A vector function F(t) is said to be differentiable
att = c if

i Fe+h=f()

h—c h

exists

and the limit is called derivative of F(¢) at ¢ and is denoted by F’ (0).
We also write
F (1) = lim EO=F©)
t—>c {—cC

A function is said to be differentiable or derivable if it is derivable for every
value of the interval of definition of the function.

Theorem 3.1 F(r) = F@i+ £,(0)] + f3(t)/€ is derivative function if and
only if f,(¢), f,(¢), f;(¢) are also derivable and

df _dh; dh s dhp
a  dr a7 dr

f@+h)i+ f,(t+h) ]+ fi(t+h)k

LA+ £,(0] + L(0OF]
h

F(t+h)—F(t
Proof : Since M =

59



LGNSO A D-LO 5 AEED- SO
h h h
Taking the limit 7, —s (0 on both side of eq. (1), we get
HmF(Hh)— F(7) G ORAGR
h—0 h h—0 h
i BEDRO g HEDSO

d¥ _dh; dh s Ay
dt dt dt dt

Definition 3.4. If r is the position vector of a moving point P then we

define velocity v and acceleration ¢ of moving point P as under

- dr
V=—
dt
-~ dv dfdr) d*
and a=—=—|—|=—>.
dt dt\ dt dt

EXAMPLE 1. If a particle moves along a curve x=4 cos ¢, y =4 sin ¢,
z = 6t, then find the velocity and acceleration at = 0. Also find magnitudes
of velocity and acceleration at any time t.

Sol. We have x =4 cost, y =4 sint, z = 6t

Let 7 be the position vector of the particle at any time 7, then

ro=xi+y+zk

ie. r = 4cost |+ 4sint j + 6tk

d o
Velocity () = 7:= _4sint; + 4cost | + 6k

2

=— 4cost i —4sint |
ar’

and acceleration (q) =
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— d; A ~
At t =0, we have v :E =4/ +6k
t=0

- dPr

and a . =l T 4
t=0

their magnitudes,

1v|=/16sin’ £ +16cos> £ +36 =16 +36 =+/52 = 24/13
and la| = J16cos?t+16sin’f =+/16 =4

EXAMPLE 2. Let u =% — £ + (2t + Dk

- A d ~-
and v=(2t-3)i + j—tk, find E(”-V) att = 2.
Sol. Here y =/ —fj+(2t+ )k and v=(2-3)i + j—tk-

- =

uv=[ -+ 2t + Dk).[(2¢ = 3)i + ] — tk]
=172t =3)+ (=t)1) + (2t +1)(=1)
=20 =32 —t -2t —t =2 -5t -2t
and hence i(&}) = i(zﬁ =52 =26) = 6> =10t -2
dt dt
At t =12, we get
%(;;) =6(2)’-10(2)—2=24-20-2=2.
THEOREM 3.2 The vector function 7(;) is of constant magnitude iff

— ﬁ_ﬁ
f(@). 4 =0.

PROOF: First we assume that the vector function 7(1) has a constant
magnitude, i.e.,
| /| = constant
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=

745 _y
dt

| /P = constant

f.f = constant

d ——
—(f.fH)=0
” .5
747 7
dt dt
df df
2/ ==0 =L -
! = d
Conversely, we assume that
—df —df df -
21 ——=0 —t+——f=0
S = di | dr
d ——
= (f.f)=0
» .5
/.f = constant

=
=

1e.

| /P = constant
| /| = constant

7(;) is of constant magnitude.

Note. Above theorem can also be stated as :

The necessary and sufficient condition for the vector function ]7(1) to

—d
have constant magnitude is [ 7{ =0.

THEOREM 3.3 The vector function 7(;) has constant direction if

and only if fx%:().

PROOF: First, let us take 7 = fFwhere F is a unit vector in the

62



direction of f .

ﬂ:fﬁ-l-%i“;
dt dt dt
X_f‘_ dF  df ;
and hence f (fF) (f 7 +dt F]

_fo dF fdfoF

- dF -
= f?Fx—+0
/ dt
- df )= dF
—+0F ..(3.1
fx < G.)
Now we assume that 7 has constant direction
= F is a constant vector
dF
20
= di
— df -
so from eq. (3.1) fx—f=0
dt
Conversely, we assume that
—~ df =
f><7{=0 so from (3.1), we have
- dF - - dF
O’ Fx—=0 Fx—=0 ..(32
dt = dr (32)
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From (3.2) and (3.3), we have
aF_,
dt
F is a constant vector both in magnitude and direction.

= F has a constant direction

EXERCISE 3.1
A particle moving along the curve x = ¢!, y = 2 cos 3t, z = 2 sin 3t.
Determine the velocity and acceleration at ¢ = 0.

A oA . . A d - 3
IfA= 4% —fj+ (2t +1)k and B = (2¢-3)i + j—tk then find E(A - B),

d — —
—(A.B =
dt( ), att= 1.

If A=r%—6j+@t+1)k, B=ti +sing + costk then find

i) %(K.E) (i) %(Kx@
dA d ——
(iid) [, (iv) - (AA)

- - d’A -
If A=ae™ +be™ then show that . a’A=0

. dr . dr -
If 7 denote unit vector, prove ” XE =r XE where r=rr
d’A

If A =3i—62] +4k , then find o
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B.A.
UNIT-1II

MATHEMATICS SEMESTER-I
LESSON NO.-6

Dr. Tirth Ram
Dept. of Mathematics,
University of Jammu

3.4 Partial Derivatives of Vectors

If F is a vector function depending on more than one variables say x, y,
z we write

F=F (x, y 2);
then the paritial derivative of F w.r.tx is defined as

OF —1im F(x+6x,,2) F(x,y,z) if this limit exists

g 550 ox

F(x,y+8y,2)~F(x,,2)

Similarl F _ lim
miuarly = —
Y 3

Sy—0 5y
and oF im F(x,y,z+0z)-F(x,y,2)
82 5z—0 52

are the partial derivatives of F w.r.to y and z respectively if these limit
exists.

In case
F (w2 =F & no a+E(xy,2)) +E(x,y,2)k
F OF .~ OF» .~ OF»

then OF _Oh;, Ofs OFy

o ox ox’ ox
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aF OF, OF . OF 6F 8F
8y 0z 82 ﬁy

—k

OF OF, . OF, - 0F,
O iR i &
and Oz 8zl 62] oz

Partial Derivatives of Higher Order
Higher order partial derivatives can be defined as

OF_0(oF) o°F_ofaF
o’ oxlox) &' oyloy)
F_a(aF) oF_ oo
oz" ozl oz ) oyt ovloy )
| | O'F _&°F

n general, _8x6y oy

Total Differential

Definition 3.5 The total differential of F = 1:“( x,y) 1s given by

dF:a—Fdx+6—de
ox ox

If A and B be two vector functions of variable x and y then

2 (xB)-A B, A5

ox ox Ox

—(A B) = Kxa—B+%x§
ox Ox

Limit of Vector function of two variables

Definition 3.6 A vector function F (i, v) is said to tend to a limit ‘/” when
u tend to ¢ and v tend to d, if for every ¢ > (), there exists §> () such
that

F(u,v)—I|< & wherever 0<|u—c|<J, 0<ju—-d <8
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Definition 3.7 A vector function F(u,v) 1s said to be continuous for
u=c v=dif

lim )F(u,v):ﬁ(c,d)

(u,v)—>(c,d

It can be easily shown that

F(u,v) = f,u,v) + f,(u,v) ]+ fi(u,v)k

is continuous if and only if
|, v), f,(u,v), f,(u,v) is continuous.

EXAMPLE 1. If A =xyzi +xz2°j - vk

and B=x7 — xyzj + x’zk
24 25
_X_ b
then find the value of PRRAPN at the point (1, 1, 0)

—

OA A ~
Sol. We have — = xzt — 3y2k
oy

oA
8y2

= —6y/€

—

Now o8 =3x% — yzj + 2xzk
Ox

P

and 88 123 = 6xi + 2Z/€
X
2A 25
0 f‘x 0 ]f’ = (— 6yk) x (6xi +2zk)
oy- oy

=(=6y) (6x) (kxi)+(=6)(2z)(k + k).
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=— 36xy ] + 0= 36; at the point (1, 1, 0)
EXAMPLE2. If A= x2yzf — 2xz3}' +xz%k and B=2xi + yj —x’k

2

then find axdy (Kxﬁ) at the point.
i ik
Sol. Here A x B =
AxB x’yz —zxz’ xz’
2z y -x’
|2xz* xZ2*| Alx’yz X2’ iy x’yz —2xz°
=1 —
y X’ 2z —x 2z -y

= | (2x'z° —xyz*) - jA'(—)c4 yz—2x2")+ k (x*y’z+4xz")

or AxB= Qx’z —xyz?)i + (x*yz+2x2%) ] T (x*yPz +4xz* )1€
(%)
Differentiating equation (*) partially w.r. to y, we get
E(K X E) = —xz% + x4zj' + 2x2yz/€ (*%)
oy
Again differentiating (**) partially w.r. to x, we get
0~ = A A ~
(A xB)=—z% +4x’z] + 4xyzk
Ox0y
o = = 2 9%, Ak PN
AxB)=-4i-8j+0k=-4(i+2j
ox0 ( ) J ( J)
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Q. 4.

EXERCISE

(o a #i] [of o o
Find ou ov ou’ and Ou Ov Ouodv

- 1 ~ 1 .1 -
where 7 =5a(u+v)i +Eb(u—v)j+5uvk

If o(x,y,z) =xy’z and A = xzi —xyj + yzk ,

& (OA)
ox’oz

find at (2,-1, 1).

If A=2x>y—x")i+(e” —ysinx)j+x cos yk

If ]?‘ = xyzf+ xz2j—y2k’\ and G = x2f—xyzj +XZZkA

then show that

0°F . 0*G
oyt ox’

=0 at (1, 1, 0) equal to — 47.
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B.A. MATHEMATICS SEMESTER-I
UNIT-1II LESSON NO.-7

Dr. Tirth Ram
Dept. of Mathematics,
University of Jammu

3.5 DIRECTIONAL DERIVATIVE AND GRADIENT

Directional Derivative (i) If ¢(x, y,z) 1s a scalar point function, then the

directional derivative along the direction of coordinate axes is defined as

% o6 % .
x oy oz respectively.

(i) If F (x,y,2z)= Fii + sz + F3l€ is a vector point function then the directional
derivative along the +ve direction of coordinate axes is defined as :
OF OF OF

o 5 . respectively,

OF 0OF , OF, » OF; »
—=—i+—j+—k

ox Ox 0z ox

The vector operator v (del) is defined as :

~ 6 A 5‘ ~ 8 a ~ a o) a r
v=Il_—tj—th_—=—Il+—j+—k,
ox "oy 0z Ox Oy Oz

Definition 3.5 (The Gradient of a scalar function)

where

Let ¢(x, y,z)be a scalar point function defined and differentiable at each

point (x, y, z). Then the gradient of ¢ is denoted by V¢ or grad ¢ and
is defined as :
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Vo= i;+£}+ﬁ]€ ¢:@f+@j+@l€
ox oy~ Oy ox oy oz

EXAMPLE. If f=3x>y—y’z", then grad f at the point (1, — 2, — 1)

Sol. We have f=3x%y—)*z?
8f f of
=6 =3x*-3y°z Il T
ox e oy and Oz re
2O RO f 2204
=i—+] =6xyi + (3x* =3y°z _
grad J o 8y 8 Vi +( yz)j

2y'z;
and hence grad f|r at the point (1, =2, — 1) is
grad 1 :—125—9}—16l€-
THEOREM 3.5 If ¢ and vy are scalar function of x, ), z, then
0] grad (¢p+y) = grad ¢+ grad v
()  erad (py) = ¢ grad v + ygrad ¢

¢j v grad ¢ grad y
dl—1|= W0
(i) gra (W v

- Y et
Proof: (i) grad (¢p+y) = ox J 2 (o+y)

:fa—i<¢iw)+}§(¢iw>+/€§(¢iw)

BTN TR T T TR IS

gl Ix# eﬂy vl ez ﬂZH
_ [f%i;%izﬂ] . (;a‘/’i;a'/’izea'”j
ox oy 0z ox oy 0z

71



= grad ¢ + grad v .
(i1) and (ii1) Exercise for the students.
EXAMPLE V¢ ie, grad ¢ where ¢ is given below :
b =r = (e )"

Sol. Here ¢g=r"=(x*+)* +2°)"?

0p n, , 5 %‘1
L= (P +y +z
o 2( y )

n-2
ai(x2 +y*+2%) :g(x2 +y°+2°) 2 x2x
X

n-2

=nr X
0p _ .2 O .,
mi —=nr 'y —=nr ‘z
Similarly oy ' 2
grad ¢ = EIA? =" (xi + yj’ + zlg) ="
1 X

EXAMPIE Find the directional derviative at (1, 2, — 1) of
fix, y, z) = 2x°y — 3y*z
in the direction of the vector 2, — 3¢, + 605 i-€-» 2i —3 ] + 6k -

Sol. Here fix, y, z) = 2x%y — 3y*z

~Of ~Of ~Of
— I —+j—+k
grad f lax J Py

= 1(6x°y)+ j(2x° —6yz) + k(=3)?)
= 12i +14j-12k at (1,2, - 1)

Directional derivative = 5 grad f

a 20-3j+6k 2i-3j+6k

where @ = 0T 10136 J49

23] +6k
7
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Hence the required directional derivative

= %(22 —3]+6k).2(6i +7 ] — 6k)

:2(12—21—36):%x—45=—%
7 7 7
EXERCISES
If F= yg—zg f+(zg—x%j+ xg—yg l@provethat
0z oy ox 0Oz dy = Ox
(i) F=rxvf () ‘=9 (iii) E.V/ =0

If ; =ai+a,j+ak, r=xi+yj+zk , then prove that

() avr=3a (i) grad (ar)=a
Find the directional derviative of ¢ = xyz at (1, 2, 3) in the direction of

A

.
Find the maximum value of directional derivative of ¢ = 2x* +3y” + 52> at

the point (1, 1, — 4).
In what direction from the point (2, 1, — 1) is directional derivative of

¢ = x*yz® maximum and what is its magnitude ?
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DIVERGENCE AND CURL OF A VECTOR
Definition (The Divergence). If F is a given point vector function which is
continuously differentiable, then the divergence of F is written as v F or div F, defined
by

VF = dlvﬁ—za—F }a—F+l€a—F: oF
ox oy oz ' ox

In the above summation ; is to be replaced by 7 and f and x to be replaced
by y and z respectively.

Note that if div F =0 then F is called solenoidal vector.

Definition (The Curl of a Vector) If Fisa given vector point function which

continuously differentiable, then the Curl of F is written as Curl F or v xF and is
defined by

Curl F = z£+]i+k8 xF = szaF
ox ~ o0y 0Oz 7 ox

Now that if Curl F= 0 then F is irrotational vector.
In short we define the divergence and Curl of

F= Ef +F,j+Fsk as under

OF_OF OF, OF

divF= VF=
z ox Ox 8y 0z
i J ok
cul F-ovi=yiF_|0 2 0
ox |ox oy oz
Fl FZ F3
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The Laplacian Operator y/2

The Laplacian operator is denoted by 2 and defined as :

EXAMPLE 1.

o0 o0 &

Vie—+—+—
ox> oy’ oz

Prove that div (grad ¢) = N?

Sol : div (gradf') =V.(Vg)= Zia%(ng)

EXAMPLE 2.

EXAMPLE 3.

Sol.

S A A | Ay
6, ox Oy 0z

_2% LR i% el g% o
_Gx( xj(z.l)+ay(8yj(].])+az(azj(k.k)

PR ij=jk=ki=0

and  7i=jj=ki=1

Show that Curl (Curl F) = grad div F — y2F proof is left
for the students.
Find the Curl of the vector function

F =y(x+ Z);-i- Z(x—l—y)j'—l— x(y-{-z)k,\ and hence find the
value of Curl (Curl F)

i j k
Curl F= i i i
0x oy 0z

y(x+z) z(x+y) x(y+2z)
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NG, 0 Al O 0
= z{5x(y+z)—éz(x—i-y)}—][ax(y+z)—gy(x+z)}

N, 0
+l{az(x+y)—5y(x+z)}

:f(x—x—y)—]’(y+z—y)+l€(z—x—z)

Curl F =—jy—jz—hx=—yi -z —xk

ik

- o0 0 0

.. Curl (Curl F ) = a 5 g
-y -z —X

J o o | «fo 0
=i 55D {a(ﬂc) —a—z(—y)}

[ o 0 ]
+k _a (-2) —5(—y)_

=i+ j+k

EXAMPLE If ¢ =x’+ )’ +z* —3xyz, then find div grad ¢, Curl grad ¢.
Sol. grad ¢ =V¢

div (grad ¢) = V.(Vg) = (V’¢) = Zx‘f 429,09

&)/2 822
:i(%]+i+ 2 +£+(%j
ox\ox) oy \oy) 0z \oz
=£(3x2 —3yz)+£(3y2 —3xz)+£+(3z2 —3xy)
ox oy 0z

=6x + 6y + 6z
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Q. 1.
Q. 2.
Q. 3.

Now Curl (grad ¢) =VxVg=0.

EXERCISES
If F=zi+ Xj + yl€ , then prove that Curl (Curl F) =0
If F=xy* —2y°2%] +xyz°k , then find div F at (1, -1, 1).
If A=x*+yj+2%k, B=yzi +xzj + xvk

2

AxB _
then find axay( at (1,— 1, 0)
L p=e ™ (c,cosly+c,sindy) where ¢, and c, are constant vectors,
then find
*v v
2 %57
ox~ Oy
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B.A. MATHEMATICS SEMESTER-I
UNIT-1II LESSON NO.-5

Dr. Tirth Ram
Dept. of Mathematics,
University of Jammu

Line Integrals

Py

.[ rdr= Jr.dr = I(Fldx +E,dy +Edz)

21 ¢ ¢

is called a line integral

If C is a closed curve, then the integral around C is denoted by

c

[IFdr =[[|(Fdx+F,dy +Fdz)

it represends the work done by the force F.
In general, any integral which is to be evaluated along a curve is called a
line integral.
EXERCISE 1. Find the total work done in moving a particle in a force field
is given by

F = —3xpi -5z +10xk
along the curve x = £ + 1, y = 2£, z=¢F from ¢=1 to t= 2

Sol. Total work done = J.F.d = I3xy dx— 5z dy +10xdz.

2
= j 32+ 1)262d(E +1)=50d (212) +10(£> +1)d (2)
t=1
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(6t +61t7)2t dt —5¢° .4t dt +10(¢> +1)3¢7dt

Il
——

—_—

[ (1267 +126%) = 20¢* +30¢* +30¢* | dit

[(126° +10¢* +12¢° +30¢ | dt

—_——

e 10e 12t 300f
e 5 4 3|
=t 27 +3¢* +107°

—2(2° —19)+2(2° —15) +3(2* =1*) +10(2° - 1)
=2 (63)+2 (31)+3 (15)+10 (7)
=126 + 62 + 45 + 70 = 303 Ans.
EXERCISE 2. If ¢=2xyz2,F =xyi — zj + x’k and c is the curve
x=1",y=2t,z=¢ fromt=0to t =1, then evaluate the

following line integrals :

(@) [gdr (b) [Fxdr

Sol.  (a) Along C, ¢ =2xyz" =26 (20)(°)’ = 4",
r=xi+yi+zk=0%+25+0%k
and dr = dxi +dyj + dzk = (2 +2 ] +3¢°k)dt , then
[pdr - j 4°(2 T+ 2] +362R)di = j(srmf +8 7 +120"F)dr
: 2o 0

8. 8 . 122 8. 8.
= i+ Jj+ kl =—i+—j+k
11 10’ 12 11 10
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(b) Along ‘C’, F=xyi —zj + x*k =265 £ ] +1*k

then Fxdi =% —£]+1'k)x (24 + 2] +3t%k)dt

i Jj k
=2 £ ¢
2t 2 3
e A A N 7 A A A AR
A — +k
L o T 2t 3¢ 2t 2

= (=365 = 2tHi = j(61° = 26%) + k(48 +2t%)

= (=36 =2t -4 j+ (48 + 21k

1 1 1
[Fxdr=i[(=36 =2t")dt+ j[ (4" )dt + k[ (4¢° + 26" )t
0 0 0

J 3 ZIST W 4| A4t 2t5|1
=i|-———-— - +k|—+
L6 5] 76l 14 s,
=i —l—g}+]{—z}+l€[l+—}
2 5 3
10" 37T 5h A
EXERCISE 3. If K(;) _— _tzj' +(t _1)]€ and B(?) = 2¢% + 6tk then find values
of
2 2. _
(a) [AB dr (b) [AxBar
0 0
Sol. (a) AB =[ti —1* ]+ (1 =1)k]. [2¢%] + 61k]

=(t) 2t°)=£2.(0)+ (¢ =1) (61)
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(b)

=21 +61* —6t

2wt 6 6|

_+___

2 2
j AB dt = j (2 + 61 —6t)dt =
0 0 3 2

0

1 2
=—1*+20 -3¢
2

=%[24 —0]+2[2° -0]-3[2° -0]

0

:lx24+24—3><4
2

=8+ 16—-12=12.

ik
AxB=|t - 1-1=i(-6-0)—j(6r* =27 +26*)+2'k
22 0 6t

2 AxBdt=i 2 —6°dt — j[ (822 =217 )dr + k" | 2¢* dt
!

0

or'[ -2t 82" A2

=——] - +— +k|—

4 o 4 3 o 5 o
=—3><8f—}'(—8+ﬁj+l€ﬁ
3 5

~ 40 ~ 64 -
=-24i ——j+—k
31 5 Ans.
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EXERCISES

Q. 1. Evaluate [ﬁﬁ,d;, where F:xzxsé’l +x,x6, +x1)(2§3 and C is the

curve r=eif +ext’ +et’ varying from ¢ =—1to ¢ = 1.

Q. 2. Evaluate IF.d; where F= zf+x}'+yl€ in the arc of the curve
F=costi+sint j+ h from ¢ =0tor=2m.

Q.3. If F=(3x"+6y) —14yz +20x2k then evaluate [F.dr from (0,0, 0)

to (1, 1, 1) along the following paths.
x=ty==tz=~r
P2 .
Q. 4. Line integral I F.dr is independent of the path joining any two points P,

and P, in a given region if and only if

mf?_d; =( for all closed paths in the region.

Q. 5. Find work done in moving a particle in the force field

F=3x%+ (2xz— y)}' +zk along
(@)  The line joining (0, 0, 0) to (2, 1, 3)
(b) Thecurvex =2£,y =1t z =4~ —t from t = 0 to
t=1.

Q. 6. Find J'K_df where IK = x* —xy j from point (1, 1) to (9, 3) to parabola

2 = x.

y
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B.A. Semester-I
Unit-1V MATHEMATICS Lesson No. 9

Mohammad Rasul Choudhary
Rajouri
POLAR CO-ORDINATES
(1) Introduction
(2) Relationship between Cartesian & Polar Co-ordinates
(i) Working Rule
(i1) Solved Examples
(111) Exercise
(3) Angle between Radius Vector and Tangent
(1) Solved Examples
(i1) Angle of intersection between two curves
(i11) Solved Examples
(iv) Exercise
INTRODUCTION

The students are familiar with Cartesian System of co-ordinates.
Besides this system, the position of a point P in a plane can be
indicated by (i) its distance y from a fixed point O and (ii) the
inclination 0 of the line OP with a fixed line OX in the plane. y and
0 are called the Polar co-ordinates of P. Here

(@) O is called pole

(b) OX is called initial line

(c) r s called radius vector
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r

i

LR

foAEY
| —

S

r

A
-
-~

e e T Ty

(d) 0 is the vectorial angle of P

r is considered to be +ve if it is measured from the pole O
along the line bounding the vectorial angle and negative when measured
in the opposite direction. And 6 is considered to be +ve if it is
measured in the anti-clockwise sense.

Remark :- If r and 0 are given then there is only one point
whose co-ordinates are (r, 0). But if the point P be given, its co-
ordinate may be (+ 1, 0), (+ 1,0 + 2n), (+ 1, 6 +47) ....... etc.

RELATIONSHIP BETWEEN CARTESIAN AND POLAR CO-
ORDINATES

Let P (x, y) be the Cartesian Co-ordinates of the point P in a
plane and P(r, 8) be its polar co-ordinates. Join OP. Draw PM L
X'OX. Then OMP is a rt. triangle.
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O—M:cos 0 and m:sin 0
OP OP

= OM = OP cos 6 PM = OP sin 0
= X=rcosO ..... (1) and y=rsin® ... 2)

With the help of relation (1) and (2) the Polar Co-ordinates
are transformed into Cartesians and vice versa.

Working rule :
(1) To change a cartesian equations to Polar equations,
put Xx =r cos 0 and y = r sin 0 and simplify the result.
(i1) To change a Polar equation into caretsian equation,

X ) :
put cos O = — and sin 6 = 4 and clear the fractions after
r r

putting r = ,/x? + y> where required.

Example 1. Transform the following equations to polar co-ordinates :

(i) x*+y* =36 (i) x*-y*=9

(iii) (x*+ y?)? = a% (x>-y?) (iv) x*+ y?= 2ax

(v) x*—y*=2ay (vi) x’=y*(2a — x)
Solution : (i) Putx =r cos 0 and y =1 sin@

Then x*> + y?> = 36 becomes
(r cos 0)? + (r sin 0)*> = 36
= r’(cos? 0 + sin? ) = 36

= 2.1 =36
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= rr =36

(1) Put x=rcos 0 and y =rsinf
Then given equation x*-y? = 9 becomes

(r cos 0)? — (rsin 0)> =9

or r? (cos? 0 —sin*0) =9
r’.cos260 =9
(ii1) Put x =rcos O and y =r1sin 0
then given equation (x*+y?)? = a’ (x’>-y?) becomes
[(r cos 0)*+(r sin 0)?]> = a° [(r cos 0)>~ (r sin 0)?]
= [(1*>cos?’0 + r?sin?0] = a? [r?* cos? O— 1 sin? 0]
= r*[cos?0 + sin? 0] = a’ r? [cos® O — sin? O]
= r’.(1)> = a’ cos?20
= r’ = a’cos20
(iv) Put x =rcos 0 and y = rsinf
then given equation x>+ y> = 2ax becomes
(r cos 0)> + (rsin 0)> = 2a.rcos9
r’[cos?0 + sin? O] = 2ar. cos 0
.1 = 2ar cos9
= r = 2acos9
(v) Put x =rcos 0 and y = rsin
then given equation x*-y> = 2ay becomes
(r cos 0)* — (r sin 0)? = 2a.rsin 0
= r’[cos’0—sin> O] = 2arsin0
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= r cos 20

2a sin 0

(vi) Put x =rcos 0 and y

then given equation x* = y?

r sin 0
(2a — x) becomes

(r cos ©)° = (rsin 0)> (2a—r cos 0)

= rrcos’0® = r?-sin?0 (2a—r cos 0)

cos> 0
= r— 3 = 2a-rcosH

sin” O

0
= r C,Osz +rcos® = 2a
Sin

= r1c0s’0 +rcos 0.sin’0 = 2asin’0
= 1 cos0 (cos’> O+ sin’0) = 2asin’*0
= rcosO .1 = 2asin’0
= r cos® = 2a sin’0

Example 2. Transform the following Polar curves in cartesian form

(i) r=acos6 (i) r=sin O + cos O
(iii) 6 = tan'(m) (iv) r’cos 20 = a?
. , 0

(v) r?sin 20 = 2k (vi) \/;cos5=\/2
. X . y

Sol. : (i) Put cos 0= — andsin == and r= \[x?4y?
r r

then given equation r = a cos 0 becomes
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X
r = a.—
r
= rr = ax
= (1/)(;2-}-);2)2 = a&X
= x*+y? = ax
.. X . y
ii)Putcos 6 = —, sin 6 = = and r= x%+y?
y
r r

then given equation r = sin O + cos 0 becomes

y X
2 2 = L4
X“+y c
y+X
- [2, 2 _
X“+y .
X+y
[2, 2 o ———
= X“+y” = /X2+y2
= [x*+y? = x+y
(iii) 0 = tan™!' (m) =tan 6 = m
sin 0
= s ™
= sin® =mcos O (*)
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(iv)

(V)

X i y
Now put cos 6 = — and sin 6 = =
r

r

then (*) becomes

X
Z = Imn.—
r
= y = nmx
r> cos 20 = a’ becomes
r’[cos? O —sin?0] = a2
= r1’cos’? 0 -1r’sin’0 = a2
= (rcos 0)> — (rsin 0)> = a2
X , y
Now put cos 6 = — and sin 6 = =
r r
2 2
X Y
Then we get [l’-—j —(r.—j =a’
r r
— X2 — yz =

r? sin 20 = 2 k becomes
?.2sinBcosO =2k

= ?sinBcos® =k

X . y
Now put cos 6 = — and sin § = =
r

r
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(vi)

Then we get

=

Jr cos g:@

sq. on both sides, we get

[l+cos2.€/2}
= Pl ———|=a
2
= r [1 + cos 0]
= r+rcos 0
= r cos 0

X
Now put cos 0 = —

r
Then we get
= X =
= r =
— x2+y2 —

90

=2a
=2a

rz.z.i

rr

Xy

0

2

r cos >
=2a—-r1

X

r.—

r
2a — 1
2a — X
2a — X

2a — 1

o= 7)



sq. on both sides we get

x?+y? = 4a’—4ax + x?
= y* = 4a’ — 4ax
= y> = 4a(a - x)

Q 1. Transform the following Cartesian curves into Polar co-

cordinates :

(a) x*+y? = X+y

) <23 er2/3 K

() x*-y = (x+y)
Q 2. Transform the following Polar curves into Cartesian co-
ordinates :

@ r = a(l +cos0)

(b)y r? = a%cos 20

(c) r? = a’sin 20

2a
d — = 1-cosH

ANGLE BETWEEN RADIUS VECTOR AND TANGENT

Find the angle between radius vector and tangent at any point

of a given curve.
OR
d
Prove that tan ¢ =1 d—; where the symbols have their usual
r

meaning.
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Proof. Let P (r, ©) and Q (r + Or, 6 + 00) be any two neighbouring

points on the curve.

Let TPT' be the Tangent to the given curve at P. Let ¢ be the
angle between radius vector and Tangent. It is required to find .

Draw QM perpendicular to OP (produced if necessary). It is
clear that when Q — P 80 — 0, the secant PQ — the Tangent PT and
ZQPM — o.

¢ = It ZQPM
00 - 0
or tan ¢ = It tan ZQPM (*)
00 - 0
Now in rt. AOMQ
OM
O_Q = cos 00
= OM = 0OQ cos 060
= OM = (r + dr) cos 00
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OM

0Q
= QM
= QM
So PM

This (*) becomes

tan ¢ =

1t

1t

sin 00

0OQ sin 60

= (r + 80) sin 60

OM - OP

(r+0r)cosdb —r

Or cos 00 —r + r cos 00
Or cos 00 — r (1 — cos 00)

or cos 00 — 2 r sin? 7

QM

80 — 0 PM

(r+0r)sin 00

80 — 0 Srcos 80 —2r sin® 86,2

cos ol = 1)

(t+81) sin 00
1t _ 30
= 5050 X cos 50 SN 502 $in 80/2
50 50/2
(r+0).1 ( It singo _ U
ar a0 50 -0
do
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@
rd1r

[

Thus tan @ =1
dr

Note :If we suppose ¢ to be less than © numerically and define it to
be the angle between the positive direction of the radius vector

and that direction of the tangent in which 0 increases, then it is

do
clear that above formula holds true whether r d_ be +ve or —ve.
r

T
If rd— 1s —ve, it implies that the value of ¢ is greater than 5
r

Example 1. Show that in the equiangular spiral r = ae?'%, the angle

between radius vector and tangent is constant.

Sol. : Given equation of the curve is

r = aeecota

Diff. w.r. to 0, we get

G

_ gedcota i(6) cotal)
dr do

t
e600 o

= a .cot a
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Ocota

= acoto.e
de 1
.= Ocota
dr acota.e
do r
= r— =
dr a cot o.e? ot
achot(x
acota.e? ot
1
= tan @ =
¢ coto
= tan o
= tan @ = tan o
= ¢ =a ; which is constant.

Example 2. Find the angle between radius vector and tangent
at any point for the following curves :

1) r=a (1l - cos 0) (i1) r = a (1+cos 0)
(ii1) r = a (1 + sin 0) (iv) r = ab
(v) rm=a™cos mb0 (vi) ™ = b™ sin m0O

Sol. (i) Given equation of the curve is
r = a (1-cos 0)

Diff. w.r. to 0, we get

— = a[0—(-sin 0)]
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= a sin O

@ _ 1
= dr ~ asin®
rdo _ r
= dr  asin®
. _ a(l-cos0)
= e =y sing
42sin” 0/2
~ 4.2sin0/2.c0s0/2
= tan—
2
t = tan—
= an @ 5
. 0
?=5

(11) Given equation of the curve is
r =a (1 + cosH)

Diff. w.r. to 0, we get

E— 0O-—sin©
de—a[ — sin O]

96



= —asin 0

RN
= dr ~ asin®
—d(1+ cos0)
B 4sin®
2cos’ 0/2
= tan @ =

~ 25in0)/2.c0s0,2

te
= —cot —
2
T 0
= tan @ = tan (EJFEJ
. 9
®T 2"

(ii1) r = a (1 + sin 0)

Diff. w.r. to 0, we get

' i = 0 0
10 =a (0 + cos 0)
= a cos 0
rd0 B r
= dr  acos9
4(1+sin0)
" dcos O
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1+sin0

= tan @ =~~~
1+ cos(m/2—0)
= sin (n/2-9)
2cos’(n/4-0/2)
~ 2sin (n/4-0/2).cot(n/4—6/2)
_ [z_ﬁj
= cot |75
T 6
tan ¢ = cot [Z_Ej
_ [z (z_ﬁj
=tan 5y
N _x_ =9
P2y
_r. 9
P47
(iv) r =ab

Diff. w.r. to 0, we get

dr

do

= a
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Mo _r
dr  a
0
-4
=0
= tan ¢ = 0

= ¢ = tan”! (0)

(V) ™ = a™ cos m 0O

Taking log on both sides, we get
log r™ = log a™ cos m O
= mlogr = log a™ + log cos m 6

Diff. w. r. to 6, we get

L 14
M40 = 7T cos mo do (cos m )
1dr d
—-— = — i 0)— (m0O
= m'rdG cos me( S m )de(m )
1dr sin mO
= m-— = — .
r do cos mo
rdo __cos mo
= dr  sin mO
= — cot mO
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T
= tan @ = tan (2+m9j

T
= = — + mb

¢ > m

(vi) ™ = b™sin m

Taking log on both sides, we get
log ™ = log b™ sin m0O
= m log r = log b™ + log sin mO

Diff. w. r. to 6, we get

tae o1 do
M0 = 0F G me gp ¢ ™)
Lo 1 .
= m'rd@ = Sin mo cos mO.m
do _ sin mO
= lr’dr "~ cos mO
= tan mO
= tan @ = tan mO
— ¢ = mb

ANGLE OF INTERSECTION OF TWO CURVES

If two curves whose polar equations are given. Let the two
curves intersect at P and let ¢ and ¢, be the angles which the tangents

of two curves make with radius vector respectively. Then obviously
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the angle of intersection of two curves at P is ¢ —¢, or ¢,—¢,.

Note :

Note.

If tan @, = n and tan @,= n, then the angle of intersection

n—n
between the two curves is evidently tan™! (1 : 2]
+nn,

T
Two curves cut orthogonally if ¢, - ¢, = 5

or tan @,. tan @, = -1

i.e. n.n, = -1

Example 3. Find the angle of intersection for following pairs of

curves.

i) r=a (1l +cosB)and r = a (1-cos 0)

a

(1) r=aBandr= —

0

(1i1)) r=sin O +cos O and r =2 cos O
(iv) r=acos O andr =a (1-cos 0)

(v) r*=a’cos20andr=a (1 + cos 0)
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(vi) r’*sin 20 = 4 and r*= 16 sin 20

Sol. : (i) The equations of the curves are

and

r

r

a (1 + cosH)
a (1-cos 0)

From (1) and (2), we get

L R VY

point of intersection of two curves is (

For Curve (1)

r
a (1 + cos0)
1 + cosB
cosB

cosO + cosH
2 cosO

cos0

r =a(l+cos0)

Diff. w. r. to 6, we get

@
dr

r

a (1-cos 0)
I-cos 0
—cos 0
0
0
0
T
cos 3
T
2

a (0 —sin 0)
—asin 0
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do
= tan @,
= 0,

For Curve 2

r

a(l+ cos0)
—a sin0

—2cos2 /2
2 sin0/2 cos6/2

— cot —

)
= tan 2

=a (1l —cos 0)

Diff. w. r. to 6, we get

dr
do

do
dr

a (0 + sin 0)

a sin 0

a(l-cos0)
a sin®

2sin”6/2
2sin0/2 cos0/2
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tan @, = tan —

0
= (|)2=5

If o denotes the angle of intersection, then

a = ‘<P1—(P2‘
0.9
2 2 2
_ T
2
Note : These two curves cut orthogonally.

(i1)) The equations of the curves are
r = ad
& 0 =a
From (1) & (2) we get

a0 = 2

0

= 02 =1

= 0 = +1
For Curve (1)

r = ad
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dr

£ =
S do
o) r— =
dr
= tan @, =

For Curve (2)

Diff. w.r. to 0, we get

E
do
S do
0 r— =
dr
= tan @, =
= tan @, =

D
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If o denotes the angle of intersection. Then

a = ‘@1—@2‘

|3

Note : These curves also cut orthogonally.
(ii1)) The equations of the curves are
r = sin O + cos 0
and r =2 cos 0
From (1) & (2), we get
sin @ + cos O = 2 cos O

sin O = cos 0O
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= tan 0 = 1

tan —

T
4

) ) . (2 7z
Point of intersection of two curves is 7 4

For Curve (1)
r = sin 6 + cos 0
Diff. w. r. to 6, we get

dr

@ = cos O —sin O

d_G) sin© + cos O

rdr = CcosO—sind
= (tan (P1)9=n/4 = ©
. T
= tan—
2
T
= ¢, = E

For Curve (2)

r =2cos 0
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Diff. w.r. to 0, we get

i = -2sin0
o - sin
@ _ —2co0s0
ar T 2sin0

= —cot O

T
tan ¢, = tan (E_HJ

- (I)2 = g'f‘e

ie. 0, =

If o denotes the angle of intersection, then

0t=‘(P1—(P2‘

T_3r

12 4
_ T
!
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1.e. o =

NI

(iv) Exercise for Students

(v) The equations of the curves are

=

and r =
From (1) and (2), we get
a? cos 20 =

cos?’ 0 — sin’ 0 =

— (1—cos? 0)

-1 + cos?0-1-2cos 0=

= cos’0 —2cos O 2 =

cos 0 =

a’ cos 20

a (l+cos 0)

a? (1 + cos 0)?

1 +cos?0 +2cos 0
1 +2cos 0

0

0

2+ J4—41.(-2)

21

1 +.3

Since maximum value of cos 0 is 1.

cos © = 1++/3 is not possible
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So cosezl—\@
= l—cosez\@
.. 6
= 251n2§=\/§
L0 43
= sin®> — = —
2 2

3 1/2

)
e 3 1/4

Sin 5 = (Z)

1/4
= 0 = 2 sin’! (j—j (*)

1
7N\

For Curve (1)
r’ = a’cos 20
Taking log on both sides, we get

log r* = log a 2 cos 20

= 2 log r = log a? + log cos 20

Diff. w. r. to 6, we get

1dr
- 0+

2 rdd c0s20 O (cos 20)
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Jldr
‘rdo

. do
—

dr

= tan @,
= 9,

For Curve (2)

Diff. w.r. to 0, we get

dr
do

do

r—

tan @,

111

—sin20 5
cos20

— cot 20

T
tan (5 + 29)

E+2€)
2

a(l +cos9)

a (0 — sin 0)

—asin O

—a(l+ cos0)
asin0

—2c0s?0/2
2sin6/2 cos6/2

— cot—



If o denotes the angle of intersection, then

o = ‘@1—@2‘

= E+29—£—9

2 2 2
_ 3
2

3 1/4
= 2sm1(4J (From *)
= o = 3 sin™! (EJM

= 3 si 2

(vi) The equations of the curves are

, 4
= §in20
= 4 cosec 20
and 2 = 16 sin 20

From (1) & (2), we get
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4 . cosec 20 = 16 sin 0O

1 .
= <in20 = 4 sin 20
= sin? 20 —l
4
in 20 !
= = —
sin >
m
= sin —
6
= 20 .
6
T
0 = —
= 12

I
. Point of intersection is(Z\/Z, Ej

For Curve (1)

2 = 4 cosec 20

r
Taking log on both sides, we get

log r* = log 4 cosec 26

= 2 logr = log 4 + log cosec 26

Diff. w.r. to 0, we get
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1 1
2 —£—0+

. =0+ ——(—cosec20 cot20).2
r do cosec 20

do
= r— = —tan 20
dr
= tan (n-20)
= tan ¢, = tan (1-20)
= ¢, = n-20
.3
RERED)
_5n
6
For Curve (2)
r> = 16 sin 20

Taking log on both sides, we get
log r* = log 16 sin 20
2 logr = log 16 + log sin 20
Diff. w. r. to 6, we get

2 L dr 0 1 20.2
T~ =0+ .c0s20.
rdo sin 20

e

= tan 20
I an
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tan ¢, = tan 20

a3

If o denotes the angle of intersection, then

0€=‘(P1—<P2‘

=\5£_£

6 6
_2n
3
_2n
“ =3

Example 4. Show that following curves cut orthogonally.
i) r=a(l+cosB)andr=a (1 —cos 0)

(ii) r=a(l +sinO)andr=a (1 —sin 0)

b
and r

(i) T = 1+ cosO - 1+ cosO

(iv) Mm=a’cosn6Oandr"=b"sinn O

Sol. : Part (i) and (i1) are already solved.
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(ii1) The equation of the (1) curve is

Diff. w.r. to 0, we get

dr
do

do
dr

tan @,

116

a
1+ cosO

a/2 sec?0/2
a/2 sec?0/2.tan6/2




= " =37
The equation of the 2nd curve is
_ b
b T 1 cosh
b
= .2
2sin” 0/2

b 20

= —cosec” —

2 2

Diff. w. r. to 6, we get

dr b 9( 0 0) 1
—_——2.cosec—| —cos ec—cot — |.—
do 2 2 2 22

do 0
r— = —tan —
dr 2

= tan @,

Il
—
o
=]
7\
B
|
NSRS
N—

- (p2 = ——

If a denotes the angle of intersection, then

o = |(01 _(p2|
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2 2

T
= o ==
2

Hence curves cut orthogonally.
(iv)  The equation of the 1st curve is
" = a"cos nd
Taking log on both sides, we get

log ™ = log a" cos nO

+
| @

= nlog r = log a" + log cos nO

Diff. w. r. to 6, we get

1 dé

—.— =0
f r dr * cos n0
do
= — = —cot nO
4 cot n
T
= tan ¢, = tan [Eﬂiej
= (pl = g+1’19

The equation of 2nd curve is
™ = b"sin n6

Taking log on both sides, we get
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log b" sin nO

log "
= n log r = log b" + log sin n

Diff. w. r. to 6, we get

12 =0 0
nr-de = +Sinne(cosn).n
do
= r— = tan nO
dr
= tan ¢, = tan no
= 0, = no

If o denotes the angle of intersection,

Then o = ‘q)l—q)z‘

‘ E+n6—n9
2

T
= o = =
2

Thus curves cut orthogonally.

EXERCISE

2 1
1. Show that in the Parabola _a= 1 —cos 0, ¢ = n—a 0.
r

2. Show that at any point P(r, 0) of the curve

2 2
r-—a a
0= —— —cos™! (—j;
a r
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2

a _

(1) cos ¢ = — (11) tan @ = Nt Ta
r a

3. Find the angle of intersection of the curves
r=6cos O and r =2 (l1+cos 0)

4. Show that the circle r = b cuts the curve r>= a’cos 20 + b?

aZ
at an angle tan! (b_zj )

l
5. For the curve — =1 + e cos 0 prove that
r

1+ecos 6’]
esin @

¢ = tan™ (

6. For the curve " = a" sec (n6 + o)

Show that ¢ = g—(HG + ).
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B.A. Semester-I
Unit-IV MATHEMATICS Lesson No. 10

Mohammad Rasul Choudhary
Rajouri

GRAPHING TECHNIQUES IN POLAR CO-ORDINATES
(1) Objectives of Graphs

(1) Procedures
(11) Solved examples
(ii1) Exercise
(2) Area in Polar Co-ordinates

(i) Introduction
(i1) Formulae for finding Polar Co-ordinates
(i11) Solved Examples

(iv) Exercise
OBJECTIVES :

The objective of curve tracing is to determine the approximate shape
of the curve without plotting a large number of points.

We shall find that the equations of the curves which we shall be
required to trace are invariably such that they can be solved for r. There will
be certain cases where the cartesian equation of the curve cannot be solved
either for y or for x but can be solved for r when transformed into polar co-
ordinates. As stated in the beginning we shall not try to find the shape of the
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curve by plotting a large number of points but find the approximate shape of

the curves with the help of rules.

PROCEDURE OF TRACING THE POLAR CURVES

To trace a polar curve we consider the following points :

L

Symmetry : Determine if the curve has any symmetry by applying

the following rules :

(a)

(b)

(c)

(i1)

(d)

About the initial line : If the equation of the curve remains
unchanged when 6 is changed into — 0, then the curve is
symmetrical about the initial line.

About the Pole : If the equation of the curve remains unchanged
when r is changed into —r or 0 into m — 0, then the curve is

symmetrical about pole.

About the line 0 = g :

If the equation of the curve remains unchanged when 6 is changed

. . . . (L
into -0, then the curve is symmetrical about the line 6 = 5

If the equation of the curve remains unchanged when 6 is changed

into -0 and r to —r, then the curve is symmetrical about the

line 0 = =
me = —_.
2

About the line 6 = —: If the equation of the curve remains

T
4
unchanged when 0 is changed into g-@, then the curve is
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T
symmetrical about the line 0 = 1

3n
(e) About the line 0 = 2 : If the equation of the curve remains

3n
unchanged when 6 is changed into 7—9, then the curve is symmetrical

) 37
about the line 0 =T'

II. Pole : (i) Find whether the equation of the curve passes through
the pole or not. This can be done by putting r = 0 in the
equation and then finding some real value of 0. If it is
not possible to find a real value of 6 for which r = 0,
then curve does not pass through the pole (origin).

(11) Find the tangents at the pole. Putting r = 0, the real
values of O gives the tangents at the pole.

(i11) Find the points where the curves meets the initial line
, T
and the line 6 = 5

III. Value of ¢ : Find tan ¢ and hence ¢. Then find the point where ¢ =0

T
or —

5
IV. Asymptotes : If r - o as 6 — 0, then there is an asymptote find it

by the following method.

1
(a) Write down the given equation as —= f(0)
r
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(b) Equate f(0) to zero and solve for 0.
(c) Find f'(0) and calculate at06=06,0, ....... where 0,0, ........ are

1’72 1 72
values of f(0) when equated to zero.

1
(d) Asymptotes are r sin (0-0) = £(0,)

1

r sin (0-0,) = rez), .............

V. Special points : Find some points on the curve for convenient values

of 0.

VL Region : Solve the givenequation for r or 0. Find the region where

the curve does not lie. This can be done by the following manner :
(a) No part of the curve lies between 6 = a and 6 = B if for
a<O<p ; r is imaginary.

(b) If the greatest numerical value of r be a, then whole curve lies
within the circle r = a. And if the least numerical value of r is

B, then the whole curve lies outside the circle r = f.

(c) Finally trace the variations of r when 0 varies in the interval (0,
o) and (-0, 0) and making values of 0 for which r = 0 or attains

a maximum or minimum values. Plot the points so obtained.

VII. Conversion into Cartesians : Transform the equation to Cartesian

Co-ordinates whenever required.
Example : Trace the following curves :
(@ r=a(l + cosO)

(b) r=a (1 - cosO)
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(c) r=a (1 + sin0)
(d) r=a (1 - sinO)
() r=acos 20

(f) r=asin 20

(g) r=acos 30

(h) r=asin 30

(i) r=a+DbcosH
(@) r =a (1+cos 0)

@ Symmetry : Since the equation of the curve remains unchanged
when 0 is changed into —0.

.. the curve is symmetrical about the initial line.
(2) (i) Pole : When r =0
then a (14+cos 6) = 0
= cos 6 = -1
=COS T
= 0 ==
the curve passes through pole and tangent at the pole is 6 = .

(i1) The curve cuts the initial line at (2a, 0) ( © = 0) and the lines

{3 Jana o7
6—i2at 5 and 5 )

3. (Value of 9) :

|3

Here ¢

+
| D
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_r

=5

when 0 =0
& r = 2a

at (2a, 0), the tangent is L to initial line.

4. (Asymptote) : There is no asymptote to the curve because the value
of r does not tend to infinity for any finite value of 0.

5. (Special Points) : We have
0 0°  30° 60° 90° 120° 150° 180°
r 2a 1.87a 1.5a a 0.5a 0.13a 0

6. (Region) : The maximum value of r is 2a and minimum value of r
is 0 .. entire curve lies within the circle r = 2a and outside the

circle r = 0.

Hence the shape of the curve is as shown below :

I'-.l e,
W

s A e | e
| A

(b)r = a (1-cos 9)
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3)

(1) Since the equation of the curve remains unchanged when 0 is
changed into—0

.. the curve is symmetrical about the initial line.

(2) When r =0
= a(l-cos ) =0
= cos 0 =1
= cos 0
= 6 =0

the curve passes through the pole and tangent at the pole is 6 = 0°.

The curve meets the initial line at (0, 0°) and the lines 0 =ig at
(23] and 55 respec
5 and | % ) respectively.
0
(4) Also o = 5

Now (p=0when9=0and(p=gwhen9=n

. at (2a, m) the tangent is L to the line 6 = m.

(5) There is no asymptote to the curve because the value of r does

not tend to infinity for any finite value of 0.
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(6) Special points are :

0 0° 30° 60° 90° 120° 150° 180°
r 0 [0.13a Sa a 1.5a 1.87a 2a

(7) The maximum value of r is 2a

.. whole curve lies inside the circle r = 2a. And minimum value

of g is 0 .. entire lies outside the circle r = 0.

Hence the shape of the curve is given below :

(c)r=a (1 + sin 0)
(1)  Since the equation of the curve remains unchanged when 0 is changed
in n1-0. Therefore the curve is symmetrical about the line

_r
=5
(2) Whenr=20
= 1+sin® =0
= sin 6 = -1
. 3m
= sin —
2
37
= 0 = —
2
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3)

(4)

.. The curve passes through pole and tangent at the pole is

37
0= "—.
2

T
The curve meets the initial line at (a, 0); the line 6 = 5 at

V2 T V4
261,* 1 = - 05_7
( 2} and the line 6 5 at [ 2)

There is no asymptote to the curve because the value of r does
not tend to infinity for finite value of 6.

(5) Special points :

0 | 0°| 30°| 60° | 90°| 120° [150° [180° | 210° | 240°| 270°
r | a| 1.5a|1.87a| 2a [ 1.87a|1.5a a 0.5a | 0.13al O
(6) The maximum value of r is 2a .". entire curves lies within the

circle r = 2a and the minimum value of r is O .. entire curve
outside the circle r = 0.

Hence the shape of the curve is as shown :

s

wi=—Em il
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(d r=a(l-sin0)

changed into 9.

The curve is symmetrical about the line 0 =

-

-

(2) Whenr=0

a(l-sinB) =0

sin 0 =1
T
= sin—
2
6%
2

i
X

(1) Since the equation of the curve remains unchanged when 0 is

T
The curve passes through the pole and tangent at the pole is =5

3) The curve meets the initial line at (a, 0); the line 0 = g at
T TT T
Oa_ i = - 207_7
( 2} and the line 0 5 at ( 2}
4) There is no asymptote to the curve because the value of r does
not tend to infinity for finite value of 0.
(5) Special point
0°130° | 60° | 90°| 120° |150° |180° [210° [240° |270°
a [.S5a | .13a| O Sa | .13a a 1.5a [1.87a| 2a
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(6) The maximum value of r is 2a, therefore whole curve lies inside

the circle r=2.

Hence the shape of the curve is as shown below :

hed

(e) Given = n of curve r = a cos 20

(1) Since the = n the curve remains unchanged when 0 is changed

into -0 and O is changed into -0 therefore the curve is

N3

symmetrical about the initial line and the line 0 =

(2) When 0 =0



the curves passes through origin and tangent at the origin are

0=1+—,+3—,£5—,+£7

3T 5T
4° T4 4

T T
(3) The curve meets the initial line at (a, 0); the line 6 = Ex at [—3’5)

(4) There is no asymptote to the curve because the value of r does not
tend to infinity for any finite value of 6.

(5) Special points are ;

0 0° 15° 30° 45° 60° 75° 90° 105° 120° 135° 150° 165° 180°
ra-87a-5a0 —5a—87a-a—87a—5a0 1-5a -87a a
(6)The maximum value of r is a .. whole curve lies inside the circle r = a.

Hence the shape of the curve is as shown below :

LU P,

— R~
f
I
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(f) Given = n of the curve is r = a sin 20.

(1)  Since the = n of the curve remains unchanged when 0 is changed
into g-@ and 3 g—e. .. the curve is symmetrical about the line
0= z and 0 = _z
4 4
(2) Whenr=0
= Sin20=0
= 20=0, m, 27w, 3w, 4m, ............
0=0 z T 3L 2T, e
v T 5 A
The curve passes through pole and tangent at the pole are
0=0 z T 3 27, e
v 5 e
(3) The curve meets the initial line at (0, 0), the line 0 = g at (0,
0).
(4) There is no asymptote to the curve because the value of r does
not tend to infinity for any finite value of 6.
(5) The maximum value of r is a
whole curves lies inside the circle r = a.
(6)  Special points
0°] 15°| 30°| 45°| 60°| 75°| 90° 105°| 120°|135°
Of -5a| -87a| a | .87a] 5a| O [ —5a| —87 ‘a
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Hence the shape of the curve is shown below :

H-l=a ! |'r .1| 1
< / Y v

-
-\.\_\__\_-
e

lI"._ &

4 -\i\]( 'l._. | _-"I et
N/

(g) The given equation of the curve r = a cos 30.

(1) Since the equation of the curve remains unchanged when 0 is
changed into —0 .. the curve is symmetrical about the initial

line.
(2) Whenr =0

= acos 30 =0

T
= cos 30 =0 = cos—

2
n 3n St T=m
=t—F—F—,Fx— ...
= 30 > > > 5
n 3t Snm  Ixn
= i_,i_’i_ai_ .............
= U=t et e

The curve passes through pole and tangent at pole are
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3)

4)

(5)

(6)

The curve meet the initial line at (a, 0), the line 0 =

~a,~ | and the line 6 = —— at | ~a,~
’2 and the line ——2 at 2

There is no asymptotes to the curve because the value of r does

NS

not tend to infinity for any finite value of 6.

The maximum value of ris a .". whole curve lies inside the circle r
=a.

Special points :

6 | 0° 10°| 20°| 30°| 40°| 50° | 60°[ 70°( 80° | 90°
r a| -87al 5a| O | —5a| —87al —a| —874 —S5a| O

Hence the shape of the curve is given below :

2T ing




(h) The given equation of the curve r = a sin 30.

(1) Since the equation of the curve remains unchanged when 0 is

changed n—0.

T
.. the curve is symmetrical about the line 0 = 5

(2) Whenr=0

= asin30 = 0

= sin30 = 0=sin0

= 30 = 0, w, 2w, 3w, 4m, Sm, ..........
n 2n 3n 4m Sn

j— 6 = I T R S N

. The curve passes through pole and tangent at the pole are

n 2n 3n 4n Sn

T
(3) The curve meets the initial line at (0, 0); the line 0 = ) at

&

(4) There is no asymptote to the curve because the value of r does

not tend to infinity for any finite value of 6.

(5) The maximum value of r is a .. whole curve lies inside the

circle r = a.
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(6) Special points :

6 | 0°| 10°| 20°| 30°| 40°| 50° | 60°| 70°| 80°|90°

r O 5a| -87al a | -87a|l -5a O | —5a|—87al -a

Hence the shape is

(i)  The given equation of the curve r = a + b cos 6.
(This curve is called Limacon of Pascal).

(1) Since the equation of the curve remains unchanged when 0 is

changed into —0 .. the curve is symmetrical about the pole.
(2) Whenr=0

= a+bcos0=0

—a
= cos O = (Tj
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—-a
= 0 = cos™! (Fj

Now three cases arises

Case (a) : When a = b, then Limacon of Pascal becomes a
Cardiod of the type r =a (1 + cos ) Which has already discussed
in part (a).

Case (b) : When a < b, then the curve passes through the pole

—-a
and tangent at the pole is 0 = COSI(TJ

T
(3) The curve cuts the initial line at (a + b, 0), the line 6 = ) at
2.~ | and the line 6 = — at | & —
5 ) an the line 6 = > at )
(4) There is no asymptote to the curve because the value of r does
not tend to infinity for any finite value of 0.
(5) The maximum value of r is a+b .. whole curve lies within the
circle r = a+b. And the minimum value of ris a — b .". the whole
curve lies outside the circle r = a — b.
(6)  Special points :
0 0° 30° 60° 90° | 120° 150° 180°
r atb | a+87a | a+5b | a a—5b a—87b| ab

138




Hence the shape is

4 A=x2
w, =32
/l -h'“\.\\'
-4l .
] e \
T ! =gt . —_— s k=D
H o= N _‘1' f r=1i
l - ___..-"'I la o+ o by
. __.-"
1, =& 21
w H'= 3rl

Case (c) : When a > b then the curve never passes through the pole

and consequently its shape is

N ..

EXERCISE

Trace the following curves.
(1) r=2+3cos 0
(2) r=2 (1 + cos 0)
(3) r=6sin 30
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(4) r=2acos 0
(5) r=2asin 0
(6) r=4-3cos 0
Note : (i) Thecurver=a(l + cos0)andr=a (1 + sin 0) are called
cardiod
(i1) r=asin 20
r = a cos 20 (4 leared rose)
(i11) r = a sin 30
r = a cos 30 (three leared rose)
(iv) r=a+ b cosH, a, b > 0 (Limacon of Pascal)
AREA IN POLAR CO-ORDINATES
INTRODUCTION

The process of finding the area bounded by any portion of a plane cure

is called Quadrature.
Area formula for Polar Co-ordinates

Art (1) : If r = f(0) be the equation the curve then the area of the
sector enclosed by the curve and two radii vector 8 = o and 0

=B is
1B
EJ.Y2 de.

Proof : Let AB be the curve r = f (0); OA and OB are the radii vectors
0 = a and O = B respectively. Take any point P (r, 6) on the curve. Let Q (r
+ Or, 0 + 80) be another point on the curve. Close to P.

With O as centre and radii OP, OQ respectively, draw the circular arcs
PR and QS. Then PR = r5660 and QS = (r + or) 66
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- .l.f_..." 0
____.-'"' ____.I.-!.-' '-11'\.-:.\:-‘
P
e
,""."--:.':"._-.--.-.-"'- - i
.-"'.'---'.I .-."--- - -~
L o .
) 1
Sectorial area OPR = Er - 160
l 2 69
= 2 T
) 1
and Sectorial area OSQ = E(r + Or) - (r + Or) 00

1
B (r + or)>. 86

If S and S + 3S denotes the areas OAP and OAQ respectively, then
0S = Area OAQ-Area OAP

= Area OPQ
Now the area OPQ (= 8S) lies between the areas OPR and OSQ so that

1 1
— 42 — 2.
> 00 < 8S < 2(r+8r) 00
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In the limit when 66 — 0, dy also — 0 and consequently (1) becomes

d

9]

r
2

D

Hence from relation (2) it is dovious that

i%rsz _ j % do

B
_ jds

s,
(Value of S when 6 = 3) — (Value of S when 6 = a)
Area OAB

1 B
Hence Area OAB = Ejrzde

Art No. 2 Prove that the area bounded by the curves r = {(0), r = F(6)

and the radii vectors 6 = a, 6 = B is

11(2-2)ao,

Proof : Let AB, CD be the curves r =f (0), r = F(0), and OCA, ODB

and the radii vectors 6 = o, 0 = . Then
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Y
|
A
.--'""'-.. F |l-..", ; -
Area CABD = Area OAB — Area OCD
1 R 2 R 2
AreaCABD = Ej[f(e) |ao—[[t(0)" |ao

where r, [= f(0)] and r, [=f(0)].

Note : Determination of the limits of integration.

(1)

(2)

If the curve is symmetrical about the initial line only then the
required integral may be evaluated from O to m and whole result
is multiplied by 2.

If the curve is symmetrical about both initial line and the line

T
0 = —, then integral must be evaluated from O to —— and the

T
2 2

whole result is multiplied by 4.
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(3) Incase of aloop, the limits of integration for finding its area are
two successive value of 6 which make r = 0.

Example : Find the areas of the cardiods
(@ r=a (1l + cosO)
(b) r=a (1 - cosO)
(c) r=a(l + sinO)
(d) r=a (1l - sind)

Sol : Students are advised to first trace the curve as done in previous
chapter. Then proceed further as follows :

(a) Since the curve is symmetrical about initial line only

L *do
2£2r

Area

lJ. 1+c059 do
29

2

= g (1+ 2c0s0 + cos G)de

O ) 3

do

— azj(1+20059+wj
0

- azj g+200s(9+lcos29 do
o\ 2 2

3236+25in9+Lsm2e
2 2

0
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a{(%n+0+0j—(0+0+0)}

3na’
2

........... Trace first .............

Ans.

Since the curve is symmetrical about the initial line only.

Area

TEl 5
—r-do
2£2r
— J.a2(1—cose)2d6
0

2

- g (1—2cose+cos2 O)de

O ey

- az‘[ E—ZCOS@-I-lCOSZG do
o\ 2 2

( cos’ 0 — 1+ cos 29)

2
= 3236—25in9+lsin29

2 4 o

(3
- 2 (En—0+oj—(0+0+0)}

3ma’

= Ans.

> ns
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Since the curve is symmertical about the line 6 =

Area

%%
2 -[ Er2d9: I r2d9
% 2
I a2(1+sin9) do
A
%
2 j (1+2sin9+sin29)d6
A
%
22 J (1+2sin9+ﬂjd9
A
% 3 1
22 J (E+2sin9—500526jd6
A
: %
az(§6+2(—0059)—18m29)
2 2 2 n
%

E-E_O_O — 3_75.1_()_()
22 22
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6
= a’ T = 3a?

S Ans.
4 ns

T
2
(d) Solve yourself as above.

Example : Obtain the area of a loop of the following curves. Also
find the total area of the curves.

(i) r=asin 30
(i1) r =a cos 30
(ii1) r = a sin 20
(iv) r = a sin 30
Sol. : (1) The given =n of the curve is
r = a sin 30

......... Trace it .......... (As done in previous chapter)

_.-"'--_- T e B IR
-, -
P i
bt &
AN, ‘ N
_,:"' N 1 ry L
LERTTF ', s LN T
"'i:x_-' *, / T,
£ . ""'\-\.\_\_\.H.x ;o .-____.- s
/ e P T \
| e "'-\._\_H o~ ___.-"" !
T L
L I = £E — -l Bl
I AN {
i A T ]
i -"l' P i
\ FE Y /
Y N d
, FE Ay ;
E ViloN
"\-\\ s LI | I|I "".\P r
. . :;-i L
U= Il



= a sin 30
= 30
= 0
So, Area of a loop =

=0
=0
_o ®
= 0, 3
/3
jlrzde
)2
/3
%jazsmzwde
0
a2"f’ 1—cos66
—j a0
24 2

/3

a2
< | (1-cos60)do
; j ( )

) 160 n/3
3._ 6_Sll’l

4 6 0
al(r 1

—|| =——=,0|—-(10-0
(56000
ma’

12

Since the whole curve lies within the circle r=a and there are three

equal loops.
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2 2

whole are = 3.& -
12 4
(i1) Hint ............ Trace the curve ...........

Then for limits of integration put

r =0
= acos 30 =0
= cos 30 =0
n  3rn
30 = +—,+—, ........
= )
T T
0 = +—,+ —, oo,
= Te T

and solve as above.

(i11) Given equation of the curve is

r = a sin 20




For a loop of the curve

y =0
= asin 30 =0
= 20 =0, m, ........
= 9—0E
- ,2, ........

So area of a loop of the curve

1 /2

jrzde
0

2

172/2
- — jazsin229d9
2 0
/2
l J- 1 cos49d9
2 2

2 /2

Area of a loop = % I(I‘COS 46)do
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Since the curve lies within the circle r = a and there are four equal
loops.

Whole area = 4—

(vi) Given =n of the curve

r = acos 20

For a loop r =0
= acos20 =0
= cos 20 =0
= 20 =+E



Area of a loop

Since the whole curve lies within the circle r = a and there are four

equal loops.

=2

-I>|Q,\,

.l>|QN

| Tﬁde

-z /4

1 /4
> Iazsin229 do

-/4

1,74 4
1. J- + cos ed@
2 /4 2

sin40 /4
+

-n/4

(54017

naz naz

whole area of the curve =4.——= ——

2
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Example : Find the whole area of the curve
r’= a’cos?’ 0 + b? sin’0
Sol. : Given =n of the curve is
> =a’cos? 0 + b?sin’ 0
Since the equation of the curve remains unchanged when 0 is changed
into —0. .. the curve is symmetrical about the initial line.

Also it remains unchanged when 0 is changed into Tt — 0, .. curve

. . , T
is also symmetrical about the line 6 =5

. . , T
For the curve in the first quadrant, 6 varies from 0 to 5

72

171
Required area = _[ Erzde
0

_ 2ﬂj2(a200529 + bzsinze)de

0

— Qliaz.%.g-l-bz

NN

|

L
%
= g(az+ b?)

EXERCISE
Find the area of the following curves :

(@) r> = a’sin 20 (Ans. a®)
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(b) r* = a® cos 20 (Ans. a?)

(¢) r =2 cos (Ans. na?)

, b
(d r=a+bcos?20 (a<b) (A”S- n[a +7D

(e) Find the area common to the curvesr=a and r = a (1+ cos 0).

Sol. (e) : The = n of the curves are

r=aandr=a (l+cos 0).
Now r = a is a circle and r = a (1+cos 0) is a cardiod. Hence

common area is given by

Required area = 2 [Area of circle from O to 7 + Area of cardiod fromg to n}

%1 5 TEaZ 5
_ 2[=d’d0+2[ (1+cos0)’dO
12 52
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a? jd6+a2I(%+200$6+%C0s26jd6
%

T

|00 + |20 +2 5in6+ -sin 26
o "% 2 4

) 2n+6n—3n_2j
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B.A. Semester-I
Unit-V MATHEMATICS Lesson No. 11

Mohammad Rasul Choudhary
Rajouri

APPLICATIONS OF INTEGRATION
1. Introduction & Definition
2. List of formulae for integration
3. Reduction Formula
1) Introduction & Definition
11) Reduction formulae and their applications
1i1) Examples & Exercise
Review of integrals
INTRODUCTION :

Integral calculas is the outcome of the attempts made by mathematicians
to find some general method of finding the area of the plane regions bounded
by given curved lines. To find such an area it was found necessary to divide
the region into a large number of very small elements and then to find some
method of evaluating the limit of the sum of the areas of all these elements
when each element is infinitely small and their number infinitely increased.

In fact, the name ‘integral calculas’ has its origin in this process of
summation. Later it was found that the process of integration can also be
viewed as the inverse operation of differentiation.
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It may be of interest to the students to know that, although we are
venturing to study integration as the inverse operation of differentation, it
was integral calculas which was discovered first.

Besides the area enclosed by plane curves, integral calculus is also
applied to other important problmes such as finding the legnth of curves,
surface, volumes etc.

Def. : If a function f(x) is given, then any function F(x) whose derivative
1s equal to f(x) is called anti-derivative or integral or a primitive of f(x).

We use the symbol ff(x)dx = F(x) and it is read as integral of f(x)
with respect to X.

d , .
For example [ cos xdx = sin x ( E(SIH x) = cos Xj

J’ 3 x* i ﬁ 3
and Jx°dx = T because el 2 = x°.

Note : Since % (F(x) + ¢) = %(F(x) = f(x)

s fx) = FX) + C;
where C is called constant of integration

Before the discussion of integration and its various application the
following formulae are to be remembered.

List of Formulae
1. f adx = ax + ¢

n+l

X

2. [ xdx = + ¢ ; provided n # — 1

n+1

1
3. f;dx = log x+c
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10.

11.

12.

13.

(xx+b)"" 1

[ (ax+b)" dx =
n+1 a

dX,::
Iax b log (ax+b)+c

KRN 2|

X
[ fx)nf (x) dx = 2 \)21 + ¢ ; provided n # — 1
n

/')
j J(x)

dx =log f(x) + ¢

mx

e
Jem"dx=—+c
m

X

a

faxdx= +cC

log a

X+
aP q

ploga

J aPtd dx = +C

- +b
[ sin (ax+b) dx = M+c

i +b
[ cos (ax+b) dx = %+c

log sec (ax +b) te

[ tan (ax+b) dx = ;
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14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

log sin (aX+b) te

[ cot (ax+b) dx =
1
[ sec (ax+b)dx = ; log (sec (ax+b) + tan (ax+b) + ¢
1
[ cosec (ax+b)dx = ; log [cosec (ax+b] — cot (ax+b)] + ¢
1

[ sec? (ax+b) dx = N tan (ax+b)+c
[ cosec? (ax + b) dx = _?cot (ax+b) + ¢

1
[ sec (ax + b) tan (ax + b) dx = ;sec(ax+b) +cC

[ cosec (ax + b) cor (ax + b) dx = ? cosec (ax+b) + ¢

X

dx X
| 75 = sin' | — |[4+c or —cos' | T~ |+c
Va® —x a a

dx 1 X -1 X
| =—= = —tan'| — |+ c or—cot!| — |+ ¢
a~+x a a a a

dx

= —Sec | — |4+C Oor —cosec | — |+C
xyVx>—a’ a a a a
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24.

25.

26.

27.

28.

29.

30.

31.

f dx B i a+x

a’—-x>  2a 08 a—x+C

f dx —il X—a
x>—a? 2a 08 X a+C

a
J a2+ x> dx = E\/az—i-xz S log

2 X+vx*—a’
X a
J \/X2—a2dx=§ Vx® —a’? ) log ( a J"‘C

e™ [a sinbx — bcosbx]
a’+b’

f e sin bx = +C

eax |: » ( bj:|
= 75— sin | bX—tan | — 1l ¢
Vva’ +b? a
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e™ [a cosbx + bsin bx]
32. f e™ cos bx =

+c
a’+b’
ax
e ~1( b
=—cos{bx—tan 1(—)}%
a’+b? a
Note : The students once again are advised to memorise the above

mentioned formula before proceeding futher.

X0+ x> +3x% +2x+5
Illustration 1. f \/— dx
X

x>+ x> +3x2+2x+5
Sol. :f A dx
<2

x5+x3+3x2+2x+ 5
ARV ARY AR b

= X%+X%+x%+2x%+5x_%)dx

%H X%H 3X/+1 2X/+1 5 /+1

=/+1 /+1 /+1 /+1 -1 +1+C

w2 6 %
= —x +—X"?+—X + X +10\/—
11 7 5 3 e

(ii) | 1+ sin2x dx
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=.[\/1+2sinxcosx dx

= j\/sin2x+cosz+2sinxcosx dx

= \/(sinx+ cosx)2 dx

= J. (cosx+sinx)dx

=8in X —COS X + C

3 tan~! (x3 )'X2dX

ain [ ()

1+x° 1+(X3)2

Now put X’ =t

Diff.
3x2dx =dt
dt
2 -
x> dx = 3
dt
2 -1 3 -1
X“tan (X tan (t)—
1+x 1+t
1 (tan'(t
L fen),,
3 1+t
Put tan”! (t) = u
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Diff.

——dt. = du
1+ 2
2. -1,.3
J-X tan 6(x )d —ljudu
1+x 3
1 u?
= - —+cC
3 2
1 1302
= — (tan (x7))" +c
6
Alt. : Put tan™! (x%) =t
Diff.
1 2
6.3X dx = dt
I+x
2
X 6dx = a
I+x 3
2,..-1,.3
J-X tan 6(x )dx ~ [t dt
1+x
t2
= —+c¢
3.2
1 “1,03\12
= g[tan (x)]" +c
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REDUCTION FORMULAE
INTRODUCTION

Many functions occur whose integrals are not reducible immediately
to one or other of the standard forms, and whose integrals are not obtainable
directly. In some cases however may be linearly connected by some algebraic
formula with the integrals of another expressions, which is either immediately
integrable or relatively easier to integrate than the origin function.

Def. : An algebraic relation which connects an integral linearly with
another integral in which the integrand is of the same type, but is of a lower
degree or order or relatively easier to integrate is called Reduction Formula.

Usually a reduction formula has to be used separately to compute
the integral of the given function. This method of integration is called
integration by successive reduction.

Note : Reduction formulae are generally obtained by the method of
integration by parts.

Reduction Formula for I sin"xdx and I cos"xd ; where n is a +ve integer.

Sol. : I sin"xdx = Isin“"lx.sin xdx

jsin“‘lx (= cos x)— _[— cosx. (n—1)sin"*x 4 (sin x)
dx

Isin“xdx = —cos xsin"' x+(n— 1).[ sin" X . cos X . cos X dx
= —cos xsin""' x+(n— l)j sin"” x . cos’x dx
= —cos xsin"' x+(n— 1).[ sin" (1-sin’x) dx
= —cos xsin""' x+(n— 1)J. sin"? xdx — (n—1) Isinz xdx
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Transporting the last integral to the left side, we get

Isin“xdx +(n-1) ISiH"XdX = —cosxsin"'x +(n— 1)I sin"?xdx

(I+n- 1)J. sin"xdx = —cosxsin""'x +(n— 1)I sin™2xdx

—cosxsin"'x n-1

= I sin"xdx = .[ sin"?xdx

n n

which is required reduction Formula for J.Sin“xdx.

Icos“xdx = Icos“‘lx .cos x dx
n-1 : : n-2 d
= —COS x.smx—jsmx.(n—l)cosx d—(cosx)dx
X

= sinxcos"'x —(n—1) Isin X .cos" 2 (=sin x) dx
= sinxcos"'x+(n-1) J.cos“'z(l— cos” x) dx

= sinxcos"'x+(n-1) Icos“‘zx dx—(n-1) Icos“x dx
Transposing the last integral on L.H.S., we get

Icos“x dx+(n-1) Icos“x dx =sin x cos" x dx +(n—1) j cos"x dx

= (I+n— I)J. cos"xdx = Isin xcos" x+(n—1) '[cos“’zx dx

J- " d sinxcos"™ x n-1
= cos"xdx =

I cos"’x dx
n n

which is required reduction formula for I cos" x dx.
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7 7
Reduction formula for I sin"x dx and I cos"x dx. (These are called wall’s
0 0

Formulae)

sin"x dx

Sol. : Let S =

oY

Then by reduction formula forjsin“ x dx we have

_ - n-1 % _ %
S _ | COS X sin x| +n ljsin“’zxdx
" I
.. n-3 % %
_ (0_0)+n—1 |—cosxs1n x| +n—3 sin™ x dx
n ‘ n-2 |0 n-2-+
_ “—‘1[(0+0)“‘3.sn4}
n n-2
(n-1)(n-3)
= —Sn—4
n(n-2)
Continuing this process, we get
n-1)m-3)......... 4.2. S, ; ifnis odd
nM—2).cceenee.. 3.1
! (n-1)(n-3)......... 3.1

.S, ;ifnis even
NN —2).ccenn. 4.2
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sin x dx

Where S1

o=

72
—|COS X|0

= - (cos z—cost
2

=—(0-1)

(n-1(n-3)......... 4.2

5 1 if n is odd
Thus S, = n(rll— )3 ........... 3.1
(n-1D(n-=3)......... . .z s even
nn-—2).....c....... 42 2
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Illustration : (1) Evaluate I sin®x dx

«. 5
) —cosxsin’x 5 )
J.sm(’x dx = TJFE sin* x dx

—cosxsin’x 5 | —cosxsin®’x 3¢ .,
- +— +—|sin” x dx
6 6 6 4

—cosxsin’x 5 .5 15 [ —cosxsinx 1.
-~ cosxsin'x+— —+—J-smxdx
6 24 24 6 2

—cosxsin’x 5 .5 15 . 15
= ———————— —— cosXxsin x——cosxs1nx+—.[1.dx
2 48 48

6

—cosxsin’x 5 .5 15 _ 15
= ———————— —— COSXSIN" X———CcosXSmx+—x+¢
7 2 48 48

(2) Evaluate J. cos’x dx

sinx cos®x 6

J.cos7x dx +— | cos’ xdx
7 7

sinxcos®x 6 |sinxcos'x 4 5
| "4+ |cos’xdx
7 7 5 5

sinxcos’x 6 . . 24|sinxcos’x 2 s
— ———————+— sinxcos'x + — —+—jcos x dx
7 35 35 3 3

sinxcos®x 6 . . 24 . X 48 .
= ———+—SINXCOS X+t——SINXCcos" X+——smx+c¢
7 35 105 105
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EXERCISE

. Integrate with respect to x
(i) sin'*x (ii) sin’x (iii) sin’x
(iv) cos®x (v) cos’x (vi) cos®x

(vii) sin®x

7
Reduction formula for I cos"x dx
0
7
Let Crl = j cos"x dx.

Then by reduction formula for I cos" xdx , we get

|sinxcos“’1x|% n—l% o
C = + jcos xdx
" | oo, 0 g
n-1 |sinxcos“’3x|% n—3%
_ (0-0)+ +
- 00
_ n;[(0—0)+n 3Cn4}
n —
_ (n-1)(n-3) c,
n(n-2)
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Continuing this process, we get

(n—1D)(n-3)......... 4.2
_ nn-2)........ 3.1

(n-1)(n-73)......... 3.1. C, ;ifn s even.
nMn-—2)......... 4.2

.C, ;ifnis odd.

cos"xdx

st

Where C, =

. 72
|sin x|,

sin z—sinO
2
=1-0 =1

7
& C = _[ cos’xdx

(=)
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Thus

(n—-D(m-3)......... 4.2

if n is odd.
nMn=2).cccn.... 3.1
(n-=Dm-3)......... 3.1. T s even.
nn—2)....... 42 2
7 7
Ilustration : Evaluate (i) jsinsxdx and (ii) ICOS9de
0 0
, 7 s 7531 n 35x
(1) .[sm xdx = ==
d 8642 2 256
. % 9 8642 128
(i) _[ cos xdx = =
d 9.7.53.1 315
EXERCISE
Evaluate the following definite integrals
% %
(1) [ cos'0do 2) [ cos’6do
0 0
% %
(3) [ cos’20d0 (4) [ sin*20d0
0 0
¢ ox Todx
d -
5) _([az —dx ©6) _([(az o)
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Reduction Formula For I tan"xdx.
I tan"xdx = I tan" °x.tan’xdx
= I tan"’x. (sec’x —1) dx
= I tan"°x. sec’xdx — Itan“‘zxdx

= I tan"*x.d (tan x) dx — J. tan" xdx

n-2+1
tan
= T - J- tan"*xdx
n-2+
tan""'x
I tan"xdx = N - I tan">xdx
n —

This is required reduction formula for I tan"xdx.
Reduction formula for _[cot“xdx
Icot“xdx = Icot“’zxdx. cot’x dx

= Icot“‘zx. (cosec’x —1) dx

n-2
= Icot“’zx cosec’x dx — Icot xdx

n-2+1
—cotx
= ——Icot“‘zx dx
n—1
—cot"'x _
Icot“xdx =~ .[ cot"*x dx
n J—
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This is required reduction formula for J.cot“xdx.
Reduction formula for I sec"xdx

J. sec"xdx

Isec“’zx . sec’x dx

d
= sec"’X.tanx — I tan x . (n—2)sec"’x ™ (sec x) dx
X

d
= sec"’X.tanx — I tan X . (n —2) sec"~x — (sec x) dx
X

= sec"’xtanx—(n—2) Isec”x tan” x dx

= sec"’x.tanx—(n-2) Isec"’zx . (sec’x —1) dx

sec"’x.tan X — (n—2) J.sec“x dx+(n-2)dx Isec“’zx dx

= sec"’xtan X +(n—2) Isec“‘zx dx—(n-2) Jsec“x dx.
Transposing the last integral on L.H.S., we get

Isec“x dx+(n-2) jsec“x dx = tan x sec" X + (n — 2)_[ sec"’x dx

= (I+n- 2),‘. sec”x dx= tan x sec” > x +(n - 2) J.SGC"’zx dx.
= (n- DI sec’x dx=tanx sec”” X +(n -2) Jsec“‘zx dx
t . n-2 _ 2
= Isec“x dx=— 2 R4 0 Jsec“’zx dx.
n-1 n-1
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This is the required reduction formula for I sec"xdx.
Reduction formula for I cosec"xdx

J.cosec“x dx = J.cosec“’zx. cosec’xdx
n-2 n-3 d
=Icosec X. (—cot x) — I— cot x . (n—2) cosec” "x d—(cosec X)
X

= — cot x.cosec"’x + (n-2) Icot X .cosec" 7 x . (—cosec x cot x) dx

n-2
= — cot x.cosec" ’x — (n—2) Icosec X . cot’x dx
= — cot x.cosec" ’x — (n—2) J-cosec“’zx (cosec’x —1) dx
= — cot X.cosec" X — (n—2) I cosec"xdx +(n—2) Icosec“‘zx dx

= — cot x cosec” ’x + (n—2) J-cosec"’zxdx +(n-2) J.cosec"x dx
Transposing the last integral on L.H.S., we get

J.cosecn xdx +(n—2) _[cosec“x dx = —cotx cosec"’x +(n—2) Icosec“’zx

= (+n- 2)_[ cosec"x = —cotx cosec" > X +(n—2) jcosec“x dx

—cotx cosec" % x - 2

= _[ cosec'x dx = I cosec"’x dx

n-1 n—1

This is the required reduction formula forjcosec“x.
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Examples : (Application of Reduction Formulae)

(i)  Evaluate Itansx dx

tan*x
4

Sol. : J.tansx dx .[ tan’x dx

2
— 1 tan*x — tan X J‘ tan’xdx
4 2

= Ztan x—ztan x+logsecx +c¢

(ii) Evaluate J-tanéx dx

tan5 X
5

Sol. : jtan6x dx v|‘tan4x dx

3
— 1 tan’x — tan x —Itanzxdx
5 3
1 1 t
= — tan’X —— tan’x + ﬂ—jtanoxdx
5 3 1
1 5 1 3
= — tan’X —— tan x+tanx—jl.dx
5 3

| T T
= gtanx—gtanx+tanx—x+c
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(iii) Evaluate j cot’x dx

Sol. :jcotéx dx —

(iv) Evaluate jcot7x dx

Sol. : J.C0t7x dx -

cot’x

— I cot*x dx

3
1 cot’x — —cotx —Icotzxdx
5 3

—l cot’x +l cot’x + —cotx —Icotoxdx
5 3 1

= co‘[5x+l cot’x —cotx—jl.dx
5 3

1 5 1 3
—g cot‘x+§cot X—COtX—X+¢C

cot®x

—.[cotsx dx
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1 1 1 .
Icot7x dx = 5 cot’x +— cot*x —Ecot2 x—logsinx +¢

3
(v) ISGC7X dx = tan)i#+%jsec3x dx

1 3 |tanxsecx 1
— — tan X sec +— —+—jsecxdx
4 4 2 2

1 ;3 3
= — tan x sec x+—tanxsecx+§log(secx+tanx)+c

(vi)  Evaluate Isecéx dx

4
tanxsec'x 4

Isec6x dx = —+—jsec4x dx
5 5
1 . 4 |tanxsec’x 2 2
— —tanxsec'Xx+— | ——— +—| sec’xdx
5 5 3 3

1 4
— — tan xsec’X +— tan X sec’X +— tan X + ¢
5 15 15

(vii) Evaluate Icosec7xdx
Now

cotx cosec’x 5 5
——+g cosec’x dx

6

J.cosec7xdx
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cotx cosec’x 5 | —cotxcosec’x 3 3
+— +— | cosec’xdx
6 6 4 4

1 .5 ,
—— COt X cosec™Xx ——cCcot X cosec X
6 24

15 | —cotxcosecx 1
— —+—Icosecxdx
24 2 2

1 . 5 , 15
—— COt X coseC™X ——Cot X cosec’Xx ———Ccot X cosec X
6 24 48

15
+ 4_8 log (cosec x —cot x) + ¢

(viii) Evaluate [cosecxdx

IcosecGde

Now

1 . 4
—— cot X cosec X +—
5 5

cot x cosec’x 4

+— | cosec*x dx
5 5

—cot x cosec’x

+2J.coseczx dx
3 3

1 . 4 , 8
— Ccot X cosec X —— Cot X cosec X + —(—cotX) + ¢
5 15 15

1 4 4 ) 8
— COt X cosec X —— cot X cosec X—Ecotx+c,
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(i)

(ii)

(iii)

@iv)

(V)

(vi)

(vii)

(viii)

Using reduction formulae to prove the following :

EXERCISE

1
jtarﬁxdx = E tan’x — log sec x + ¢

jcotsx dx =—% cot*x + % cot’x +log sinx + ¢
4 1
jtan xdx=§ tanx +x +c¢
4 1 2
jsec de=§ tan X (sec’x +2) + ¢
4 1 1
Jcosec xdx = Y cosec x cot X +5 log (cosec x —cot x) + ¢
7 1 1
tan’ xdx =—log2 — —
0 2
7 1
.[ sec’ de:E[\/E +log(\/§+1)}
0
7
If1 = Itan“ xdx,(neN)
0
that i 1 +1 L
prove tha (1) nthe =T
(1) nfl, +1_,1=1

(iti)  Deduce the value of 1,
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(1)

(2)

3)

(4)

Reduction Formula for I sin™ x cos"xdx
where m, n € N

The integral I sin™x cos" x dx can be connected with any of the

following integrals.

sin™?x cos"xdx
+2 n
X cos"xdx

sin™x cos™*xdx

n+2

sin™x cos""xdx

sin™?x cos™*xdx

I
Jsin”
I
I
I
[ sin"™"x cos™*xdx (In general)
Procedure of Connections

First write down the given integral and the connector. Suppose A
and u be the smaller of the two indices of sin x and cos x respectively
in the two expressions of integral & connector.

Put P = sin*" x cos*"'x

. P . . .
Find j— and arrange it into two expressions of integral and connector.
X

Integrate back to get required result.

Example : Let us connect

J.sinmx cos"xdx with Isinm"zx cos"xdx
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Sol. : Here A=m -2, u=n
So P = sin**'x.cos""
= sin™2>!x . cos™!x

= sin™!x . cos™!x
— = (m-]) sin™?. cos X . cos™!x + sin™! x. (n+l) cos" x. (—sin x)

= (m-]l) sin™?2 . cos™? x — (n+l) sin™x . cos™ X

= (m-]) sin™2x . cos" X — (n+]) sin™x . cos" X

= (m-]) sin™?2x . cos" X — cos*x(I-sin’x) — (n+1) sin™x . cos" X
= (m-l) sin™?x . cos" X — (m-1) sin™x cos"x — (n+1) sin™x cos" X
= (m-]) sin™2x cos" X — (m-I+n+l) sin™x cos"x

= (m-l) sin™?x cos" X — (m+n) Sin™x cos"xX

Integrating on both sides, we get

P = (m-1) J.sinm"zx . cos"xdx — (m +n) J.sinmx cos"xdx
sin™!x cos™!' x = (m-1) J.sinm"zx . cos"xdx — (m +n) J.sinmx cos"xdx
= (m+n) Isinmx cos"xdx = —sin™" x cos™"'x +(m—1) Isinm'zx cos"xdx
s m-1 n+l
am n — —sin""x.cos""x m-1 . .
= Ism X cos’xdx = + _[ sin™%x . cos"xdx
m+n m+1

which is required reduction formula.

Example : Let us connect

I sin™x cos"xdx with I sin™x cos"*xdx
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Sol. : Here A= m and u= n-2

So P = sin*'xcos!

X
— Si r]m+1X COSn—2+1

= sin™!x . cos™!

dp : : )
™ = sin™ x. (n-1) cos"?x (=sin X) + (m+]) sin™x . cos X . cos™!x
X
= — (n-1) sin™?x . cos™? X + (m+]) sin™x . cos" X
= (m+l) sin™x cos" X — (n—1) sin™x . cos"? X . sin*x
= (m+l) sin™x cos" X — (n-1) sin™x cos"? x . (1 — cos?x)
= (m+l) sin™x cos" X — (n—1) sin™x cos"2x + (n—1) sin™x cos" X
= (m+l+n-1) sin™x cos" X — (n-1) sin™x cos"2x
dP 1M n 1M n-2
d_= (m+n) sin™x cos"X — (n-1) sin™x cos™™* X
X

By integrating both sides, we get

P = (m+n) J.sinmx cos"xdx — (n—1) J-sin“‘x cos"*xdx
= sin™!x . cos™' x = (m+n) Isin“‘x cos"xdx —(n-1) '[sinmx cos" *xdx

— (m+n) Isinmx cos"xdx = sin™ x cos"'x+(n—1) Isinmx cos" *xdx

m+1

x.cos"'x n-1
+

com n _ sin . -
= jsm x cos'xdx = Ismmx . cos"*xdx

m-+n m+n

This is required reduction formula.
Example : (1) Evaluate I sin’x cos*xdx
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Now

.3 3
J.sinzx cos'xdx = SMXCOSX

+é .[ sin’x cos*xdx
6 6

sin’x cos’x 1|sin’xcosx 1., 0
= + +—js1n X cos xdx
6 2 4 4

sin’x cos’x

+l sin’x cos x + ljsinzx dx
6 8 8

sin’x cos’x 1 . 1
4+ — sin’X cos X+—
6 8

COS X sin X N lJ- sin’x dx
2 2

sin’x cos’x .3 . 1
————————+—SIN"XCOS X — —smxcosx+—_[1.dx
6 8 16 16

) ) 1 . 1
= sin’x cos3x+§ sin’X cos X — —sSiN X COS X +— X +¢C

(2) Evaluate Isin“x cos’xdx

.4 3 sin’x cos’x 2
jsm xcos'xdx = ———+—

2 sin*x cos xdx

sin’x cos’x 2 sin’x
7 7 5

( j £ (x) f'(x) dx = mj
n+l

» {1 , 2} |
SIN'X | — COSX+—HC
= 7 35)
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(3) Evaluate Isinzx cos’xdx

. 3
. —sin x cos’x 1 )
J‘smzx cos’xdx = fJFZ .[ sin’x cos® xdx

—sinx cos’x 1 )
= —+— .[cos xdx
4 4

—sinxcos’x 1[sinxcosx 1 o
= +— +— I cos x dx
4 4 2 2

—sin X Cos’X . 1
= ——+— SInXCOSX +t—X+¢C
4 8 2

(4) Evaluate Isin“x cos’xdx

-3 3
) —sin’X cos’x 3 ¢ .
J‘sm“x cos’xdx = T-’_g I51nzx cos® xdx

—sin’xcos’x 1| -sinxcos’x 1 ¢ ., 5
_ +— +— J.sm x cos“dx
6 2 4 4

—sin’x . cos’x . s 1., 5
= f—g sin X cos’X +§ jsm X cos xdx

—sin’x cos’x 1 ¢ . ;
= —— - .[smxcosx
6 8

+l SIMXCOSX +l Icosox dx
8 2 2
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—sin’xcos’x 1 . 3 1 .
= T—g sin X cos X+E I(smxcosx+x)+c

Note : In I sin"x cos"xdx it is very easy (in practice) to solve various

Questions as under :

(1) If m and n are even m < n, then use the formula

. m+l n-1
. sin""xcos X n-1 . _
Ismmx cos"xdx = + J sin™x cos" *xdx

m+n m+n

(11) If m and n are even and m > n, then use the formula

« m-1 n+l
) —sin” xcos'x m-—1 . m
J-smmx cos"xdx = + Ismm ’x cos"xdx.

m+n m+n

(ii1) If m is even and n is odd, then use the formula

. m+l n-1
. sm"x.cos"x n-1 . _
Ismmx .cos"xdx = + Ismmx . cos" *xdx.

m+n m+n

(iv) If m is odd and n is even then use the formula

—sin™"'x cos"'x L m-n

J-sinmx .cos"xdx = J. sin™%x . cos"xdx

m+n m+n

7

Reduction Formula for I sin"x . cos"xdx

. . . . _2
First connect jsmmx . cos"xdx with _[smm X cos"xdx
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—sin™'x cos™'x m+1

J.sin“‘x cos"xdx = + Isinm’zx cos"xdx
m+n m+n
7
Now let 1 = I sin™x . cos"xdx
’ 0
Then
7T, 7T,
|— sin™'x . cos""'x 7 m-1 7 . m2 n
1 = .[ sin™ "x.cos" xdx
m,n ‘ m+n ‘ m+n
0 0
T, 7T,
m-1 |— sin™7x . cos"“x|é m-3 7 . mea .
_ (0-0) + sin" "x . cos"xdx
m+n ‘ m+n-2 |) m+n-2

0

= m_l[(o_o)_'_m—_?) 1m—4n:|
m+n m+n-2 ’

(m-1)(m-3)
(m+n)(m+n-2) ™*"

. . . . . -2
Again connecting Ismmx cos"xdx with I sin"x cos" "xdx , we get

sin™'x . cos™x  n-1

Isinmx .cos"xdx = + jsmmx . cos"*xdx
m+n m+n
T,
|sinm+lx cos™™ |A n-1¢. ., -
So 1 = + Ism X.cos" - xdx
m, n ‘ m+n ‘ ,  m+n

186



% %

n—1 P sin™"! x cos™ ™ x n-3

Ly o = (-0 ‘ m+n-2 ‘ m+n-2

m+n 0 5

n—1 n-3
= 0-0 1
m+n[( )+m+n—2 m’n_J

(n—l)(n—3)

(m+n)(m+m-2) ™

Generalising (1) & (2), we get

l,, if miseven

m,n

1, if nisodd

l,, if niseven

where 1 L=

o=

—cos"x
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n(n—2) ................. 3.1

(n—l)(n—3) ............. 31x
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(n—l)(n—3) ........... 4.2 1 is odd

—if niseven

N(N=2) e, 422




Thus combining all the above cases we have the following result :

(m—1)(m=3).ccceee 42

if misodd &n1i
(men)(m+n—2)....(n+l) on oo
(n—l)(n—3) ................. 4.2 o )
if mis even &nisodd
(m+n)(m+n—2) ................ (m+1)
Imn=
(m-1)(m-3)........42(n-1)(n-3).....42
if both m & n are odd
(m+n)(m+n—2) .............. 4.2
(m—l)(m—3) .......... 3.1(n—1)(n—3) ....... 3'1Eifb0thm&nareeven
(m+n)(m+n—2) ............... 42 2
%
Example : (i) Evaluate J. sin® x cos’ xdx
0
% K2.4.
J.sin6 x-cos’ xdx = ﬂ
0 15-13-11-%-7
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128

= 45045

.. « 11 4
(ii) Evaluate | sin= xcos” xdx

oY

1ﬂ2'8'ﬁ2 42
15131 1'93'7'5

sin'' x cos* xdx =

o—T

256

= 45045

.. .4 6
(ii) Evaluate | sin” xcos’ xdx

oY

- 6 31831 =
sin" xcos’ XdX = ——————
1ﬂ2-8-£{2-4-2 2

o!—.&

37

512

oA
(iv) Evaluate I sin’ x cos” xdx
0

sin’ x cos” xdx = ﬂ = i
8642 24

o!—.&

1

(v) Evaluate _[XS (1 ~x’

0

X

i
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Sol. :

Let I - jxs(l—xz)%dx
0

Put X = sin 0
diff dx = cos 0 dO
when x — 0, 0—->0
x =1 0 — z
’ 2
%

= I sin’ 6-(1 —sin? 6)% -c0os0do

0

5
sin’ O (cos2 9)4 -cos0doO

o=

sin’ 0-cos0°-cos 0dO

sin® 0-cos® dO
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5
X

——dx

(vi) Evaluate (1 o ) -

S 8

5
X

Let I= '([(1+X2)6 dx

Put x=tan O
Diff
dx = sec?0 dO
whenx > 0,0 - 0
T

, 0>
X >0, 0>

a

%

-]

tan> O

m - sec’ 0 dO

S

tan’ 0

(sech -sec? 0 dO

tan’ 0
= I 5~ -sec’ 6 dO
0

— | sin’ 0-cos’ 0dO
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4242
10-8:6:42
1

60

2a

(vii) Evaluate _[ x> (Zax —x?
0

X

) a

X

2a y

Let I = Ix2(2ax—x2) >d
0

Put x = 2a sin%0

Diff.

dx = 4a sin O-cos 0

whenx - 0,0 - 0

T
X—)28.,9—)5

2

I = | 4a’sin*0 (2a- 2a sin®> 6—4a’sin®> 0)"? - 4a sin 0 cos 0 dO

4a” sin* 0 -2a sin? 0(1-sin%0)"? - 4a sin 6 cos 6 dO

o=

= 422 2a-4a | sin* O - sinB - (cos?0)?sin O cos O dO

oY
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Q1

Q2.

Q 3.

Q4.

Q5.

= 322a% | sin®@ - cosO - cos O dO

%
!

sin® 0 - cos?0 do

5311 T
8642 2

= 32a*

EXERCISE

Obtain Reduction formula for

[ sin™x cos"x dx and hence evaluate | sin*x cos’x dx.

Obtain Reduction formula for | sin™x cos™x dx in terms of

[ sin™2x - cos™x dx.

Obtain reduction formula for

[ sin™x - cos™x dx in terms of [ sin™x - cos™2x dx

Obtain reduction formula for | tan"xdx and hence evaluate | tan®xdx.
A

Obtain reduction formula for J‘ sin™ X - cos*xdx and hence evaluate :
0

A
@ [ sin"x. cos'xdx (ii)
0

< 7
sin’ X . cos’xdx

o=
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g

2

. 6 7 , .5 4

sin” x.cos’ xdx (iv) jsm X.cos” xdx
0

O —y

(iii)
Q6. If m and n are +ve integers, show that

m!n!

!xm(l—x)ndx:m

Tdx m!n!

Tox
Q7. Show that _([(1+X)m+n+2 B (m+n+1)!

! % 3n
Q8. Show that £X4(1‘X2) =36
L % 3n
Q9. Show that J.XA(I_X) 2dx:ﬁ
0

2a 3

ma
Q10. Show that | x2ax—x*dx ==
0

dx Smt
2

Q11. Show that '([(a +X2)4 304
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B.A. Semester-I
Unit-V MATHEMATICS Lesson No. 12

Mohammad Rasul Choudhary
Rajouri
RECTIFICATION
Definition
Formulae for finding Rectification
Solved Examples
Exercise

Def. : The process of finding the length of an are of a curve between
two given points is called rectification.

Any formula expressing the differential coefficient of are length S
established in different differential calculas at once give rise by integration to
a formula for find the are length depending upon the nature of the equation
representing the curve.

For Cartesian equations of the form y = f(x)

If the length of an are of a curve measured from a fixed point A for
which x = a to another point P(X, y) on the curve be S, then

2
§ = 1+ g
dx dx

X dy 2
S=_[ 1‘*‘(&} dx
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Thus the length of any are AB of the curve between two points A and
B for which abscissae are a and b respectively is

b dy 2
= |1+ —
S _! ( dXJ dx
For Cartesian equation of the type x = f (y)

As explained above in this case

ds dx )
S 1 +| —
dy dy
Thus if the ordinates of any two points C and D on the curve be ¢ and
d respectively then the length of are CD is given by d

d dy 2
= |1+ —
S _[ ( dx} dy
Ilustrative Examples

(1) Find the length of the parabola y? = 4ax from the vertex to one
of the extremity of the latus rectum.

I im, 2ul
Sol. : Given parabola is y? = 4ax AT
....... (1) // :
Let S(a, 0) be the focus, D and D’ be E..-’I
the ends of latus rectum. T _
V10, O L S 0
Let V (0, 0) be the vertex.
If S denotes the are length from vertex El.lr‘x
to one of the extremity of the latus rectum. A
Then the required length is VD. e
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From y? = 4ax, we have

2
b
4a

X =

Diff. w. r to y, we get

& _y_y
dy ~ 4a  2a
D(a,2a) 2
S = J. 1+(d—XJ dy
v(0,0) dy
2a 2
y
= 1+=—dy
-([ 4a’
2a
= zij.\lél'az +y2 dy
a

2 2a

|-

2a
2 /4 2 . 2
X,/4az+y2+422l log[y—i_ a+y
0

a

2 [o2 2
LJ’ a2+X2dX:§‘/aZ+X2 +a?10g£uj}
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2 2 2
i L%mﬁ; e —— }

2 2
20+ 82 1og] 04 V4
2 2a
= zi[a.2a\/§+2a2 10g(1+\/§)—0} (‘s log1=0)
a
2a°
= —[\/5 + log(\/Z + 1)}
2a
= a[\/z+log(\/§+ 1)}
Example 2 :  Find the length of the curve y = log sec x from x = 0 to x

i
3
Sol. : Given equation of the curve y = log sec x

Diff. w.r. to x, we get

1 d
= — (sec Xx)
secx dx

D-|Q
» <

1
= "Sec X tan X
secx

= tan X
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T
If S denotes the are length of the given curve from x =0 to x = 3

Then

= ‘log(secx + tanx)’o/g

T T
= log(secg‘”angj—log (sec 0 + tan 0)

~ log (2+J§)_1og (140)

= log (2+\/§).

X

e_

Example 3 : Show that the length of the curve y = log [ n
e+

” IJ from x

=1tox=2is log (e+lj
e
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Sol. : The equation of the curve is

|
y = log
Lex+1J

Diff. w.r. to x, we get
de L dfe-l
dy ~ e =1 gx (e +1

e +1 (ex + 1).eX —(eX - 1).eX

et (e"+1)2
_ele+e’—e'e +e 2e"
B (e"—l)(e"+1) S|

If S denotes the length of the curve then

2 d 2
S =j 1+(d—yj dx
X

1
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2

= ‘log(eX —e™ )‘

1

= log (e’—e?)-log(e—e™)

o o
= log o2 |08 e

202
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£(x)
f(x)

dx = logf(x)J



Example 4 : Find the length of the are of the parabola y*> = 4ax cut off by

the line 3y = 8x.
Sol. : Given parabola y? = 4ax

Given line is 3y = 8x
= y=zX

Making use of (3) in (1), we get

o,
9X— ax
1 e ox =0
9X—X—
(5]
X 9 =
o
= X ' 16

when x=0,y=0

X—16 cn
8% 3
Y= 316 T 2
2
From (1) x = >
4a
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Diff. w.r. to y, we get

d 2y y

dy T 42 2a
If S denotes the are length of parabola cut off by the line. Then

3% dx ?
S = 1+ [—j dy
0 dy

_{Maz mg[m_ Vaa® +0 ”

2a
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_ s -
1| 3a 5a ar
a 2 2
S = —|——+2a’lo —2a" logl
2a| 4 8 .
2
— i{lSa +2a’log2 —O}
2a
15
— a| —+log2
{16 : }
Example 5 :  Find the length of the are of y? = x* from x = 0 to x = 5.
Sol. : Given equation of the curve
y2 = x3

= y - X3/2

Diff. w.r. to x, we get

dx

_ §X1/2
2

If S denotes the are length from x = 0 to x = 5, then
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5
= lj(4+9x)%dx
20

1
— —[73_93
_27[7 2]

1
= o [343-8]

335
27
Example 6 : Find the perimeter of the loop fo the curve
Oay’ = (x—2a) (x—5a)?
Sol. : The equation of the curve is
9 ay’= (x-2a) (x-52* . (1)

The curve is symmetrical about x-axis and meet x-axis at x = 2a

and x = 5a and hence the rough sketch of the curve is shown in the figure.
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AW i, dwl)

MEH |

X /f
¥ | \-\H_‘_

Also from (1)

y = (X—2a)_% (X —Sa)
3Va

Diff. w. r. to x, we get

-1

dy _ ﬁ{(x—Za)%+(x—5a)é(x—2a) 4}

dx

1 |2x—4a+x—5a|

“3da | 2Vx-2a |

1 { 3x—9a }
~3Ja | 2Wx-2a
X—3a

= 2Ja/x—2a

If S denotes the perimeter of loop of the curve
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¢ \Jdax —8a> + x> +9a> — 6ax-dx

2\/_5[1 Jx-2a

- J‘\/x 2a dx

_|_
2aad

-
1 [(X—Za)% +a(x—23)%:|dx

Sa

| |(x=2a)" a(x-2a)"
=$ 3 i

1
2 2

2a

_ % :{%(331)% +2a(3) 2 }—{%(O)Ha(o)ﬂ
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- % Bsa@ +2a/3a }

1

\/g '43\/5

_ 4a-\\//_§'\/5 =4\/£

Example 7 :Find the perimeter of the loop of the curve 3ay? = x (x—a)?
(a<0)

Sol. : The curve is symmetrical about x-axis and it meet x-axis at x =0

and x = a. Hence a rough sketch of the curve is shown in the figure.
v

O~ _,-v"'ﬂﬁ

The given equation is

3ay? = x(x—a)’

x(x—a)2

3a
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|
By
—~
>
|
o
~

&l&

= Bal o 2dx

3x—a
~ 2Jx+3a

If S denotes the length of the loop of curve then
a 2
dy
= I+ — -
s=2f (dxj dx

(3X — a)2
3a.4x '

0
:2]1‘ 1+ dx
0

[\

ax3 &

]‘-\/12::1x+9x2 +a’ — 6ax
0

3.

ﬂ(gfjd
3
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1 1
3x4 + axé dx

1l
& -
-
O ey

a

3x% x%
+a—

1

2

3
2

0

X
Example 8 :  If S be the length of are of the curve y = ¢ cosh [E) from

the vertex (0, 0) to the point (x, y), then show that y> = c’+s?

X
Sol. : The equation of the curve is y = ¢ cosh (Ej ......... (D)

Diff. w.r. to x, we get

& _ o (2)2(2)
dX—csm c/)dx \ ¢
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=c¢ sinh| — |-—
C/) ¢C
X

= sinh [—)
c

Since S denotes the length of are measured from x = 0 to x = x

X dy 2
S =£ 1+(&j dx
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_ {smh( j—sinh(O)}
S =c¢ Siﬂh(;j

Sq. on both sides, we get

X
S =¢? sinzh[—J
c
= C{cos2 h(—j — 1}
c

o | ¥

>

bl

y2
= ¢? {0—2—1} from (1)
S2 = yz_ c?
= |y? =c+S? Hence proved.

EXERCISE
Q 1. Find the length of the arc of the curve y*> = x* from (0, 0) to (4, 8).

Q 2. Find the length of the arc of the circle x>+ y? — 2ax = 0 in the first

quadrant.
Q 3. Prove that whole length of the curve 8a%y? = x? (a>-x?) is ma\/2
Q 4. Find the length of the loop of the curve

9y2 = (x — 2) (x — 5)?
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Q5.
Q6.

Q7.

Find the length of the parabolay = x> from x = 0 and x = 1.
Show that the perimeter of the curve :
X2/3 + y2/3 - aZ/3 iS 6a.

e -1

e +1

Find the length between x = a and x = b of the curve ¥ =
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B.A. Semester-I
Unit-V MATHEMATICS Lesson No.13

Mohammad Rasul Choudhary
Rajouri

VOLUMES AND SURFACES OF SOLIDS OF REVOLUTIONS

Volume of a Solid of Revolution

Introduction & Definition
Formulae for Volumes
Solved Examples

Exercise
Surface of a Solid of revolution

Introduction
Formulae for finding surface
Solved Examples

Exercise
Volumes of Solids of Revolution

INTRODUCTION

If a plane area is revolved about a fixed straight line in its own plane,
then the body so generated by the area is called the solid of revolution. The
fixed line about which the plane area rotates is called the axis of revolution.

Art :- Prove that the volume of the solid generated by the revolution
of the area bounded by the curve y = f(x), the x-axis and the ordinates x = a
and x = b about x-axis is
215



Y =Mxj

Proof :- Let the equation of the curve CD be y = f(x) and let the
abscissae of C and D be a and b respectively. We have to find the volume
generated by the revolution about the x-axis, of the area bounded by the given
curve, the ordinates AC and BD and the x-axis. Take any point P(x, y) on the
curve and let PM be its ordinates. Take another point Q(X + 0X, y + dy) on
the curve close to P and let QN be its ordinate.

Let v and v + dv respectively be the volumes of the solids generated
by the revolution of the areas AMPC and ANQC about the x-axis.

Then clearly dv is the volume of the solid generated by the revolution
of the elementary area MNQP about the x-axis and it lies between the volumes
generated by the revolution of the rectangles MNRP and MNQS respectively
about x-axis.

ny? 0x < &v < 1 (y + dy)? Ox

2 SV 2
or Ty <8—X<n(y+6y) ......... (1)
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Taking limit when 6x — 0, dy — 0, then we have

By integrating w.r. to x, we get
b
V= Ixyzdx
a

Hence proved.

Remark :- When the axis of revolution is the y-axis then the foumla
becomes

b
V = Inyzdx

Solved Examples

Example No. 1 : Find the volume generated by the revolution of the

2 2

ellipse —2+? = 1 about the major axis.
a v
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Sol. : The solid generated by the revolution of an ellipse about the
major axis is called a prolate period.

It is clear that the major axis is obtained by the area APA' about the
axis. Also since the curve is symmetrical about both axis.

Required volume = 2 _[ n yde
0

i 3
_ 2b’n a—iz-a——o}

| a 3
_ 2b’n a—ij
3
3 4ab’n
3

Example 2 : The part of the parabola y> = 4ax cut off by the latus
rectum revolves about the tangent at the vertex. Find the volume of the
reel then generated.

Sol. : The tangent at the vertex is x = 0 i.e. y-axis. Since curve is symmetrical
about x-axis.
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2a
Required volume = 2 _[ nx*dy
0

4a

0

2a 2
y
Required volume = 2 7‘_[ {—j‘d}’
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Example 3 :  Find the volume of the solid formed by the revolution about
the x-axis of the loop of the curve y? (a + x) = x* (3a — x).

Sol. : The given equation of the curve is
y@+x)=x*@a-x) L. (1)

Since the curve is symmetrical about x-axis and meet x-axis at X = 0 &

X = 3a.
"

[ i, U3

'xl‘

{-a, Ly

]
I
I
1
1
b
P
I
i

- S T T ] -

'

| Y 2(3a-x)
Since from (1), y* = ——=
a+x

x ¢ —a. Hence a rough shape of the curve is as shown.

3a

Required Volume = _[ T yde
0

3a 2 .
) chx (3a X)dX

0 a+Xx

3«

¢ 3ax’ —x°
n[=—

. X+a
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3a

3
= ch.(—x2+4ax—4a2+ 4 de
0 X+a

3a
x}  4dax?
——+
3

T

—4a*x +4a’ log(x + a)

0
= Tc[—9a3 +18a’ —12a’ + 4a’ log4a — 4a’ loga]
= 7{4213-10gﬂ — 3a3}
a

= a’n [4 log 2%-3]

= na’ [8 log 2-3]

Example 4. Show that the volume of a shpere of a radius a is Ena?

=]
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Sol. : Since the equation of a sphere whose radius is ‘a’ is x> + y?
= a%. Since this curve is symmetrical about both axis. It meets x-axis at (a,
0) and (-9, 0)

Required volume = “j ¥ dx

Example 5 : Find the volume of the solid generated by revolving
about x-axis the loop of
@ y’(@a-x=x*(@+x)
(i) y?(a + x) = x* (a—x).
Sol. : (1) Exercise for Students.

(2) It is symmetrical about x-axis and it meet x-axis at x =0 & x = a.

Required volume = n‘[yz'dx
0
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a

ax’ —x’
_ n.[

dx

0 a+Xx

a 3
= nj[—xz +2ax —2a’ + 2 jdx
0 at+X

~ 3 a

2
=T —%+232X —2a2x+2a3log(a+x)}

0

3 a
=T —%+a3—2a3+log2a—2a3loga}
0

a3n{—%+210g2}

2083 n{logZ — %}

Example 6 : Find the volume of the solid formed by the revolution of the
curve y (a*> + x?) = a’ about the asymptote.

Sol. : The given equation of the curve

3
a

y:
a’+x°

Since the equation of the curve is symmetrical about y-axis and it meet
y-axis at y = a. The asymptote parallel to x-axis is y = 0 while the curve has
no other asymptote.
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>

Required volume = 2 Jn yde
0

Put X =atan 0
Diff. dx = a sec’0dO
When x — 0, 0—->0
T
X > o0, 0— 5
4
/f asec’ 0do
. — 6 2
Required Volume = 2ra : (a2 +2a? tan? 9>
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_ 2na’a jj-é sec” 0dO
- 0 (sec2 9)2

4
a

Example 7 : Find the volume of the solid generated by revolving the
hypocycloid x*? + y?* = a?”* ahout x—axis.

Sol. : Given equation of the curve

X2/3 + y2/3 — a2/3

H

/n..

e
X t'{\-\.‘ ;-__,.-}'l. 4.0} -
e
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Since the curve is symmetrical about both axis. It meet x-axis at x =
a and y-axis at x = a.

Required volume = 2 _[Tf yz dx
0

Now from (1), y?® = a*3*—x*3

y2 — (32/3—X2/3)3 dX

& 2 A%
Volume=2nj(aA_XA) dx

0

Put X = a sin’0
when x >0, 06—>0

X — a, 0 > —

Diff.
dx = 3a sin?0-cos 0 dO

%

2/ 2
Volume =2n j (aé —aé-sinz 9)-321 sin?0-cos O dO
0

%

3
= 2n-3a-a’ j (1—sin2 6) -sin’0- cos O dO
cos® 0-sin 0-cos0d 0

= 6na’

cos’ 0-sin’d0
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6.4.2
9.75.3

3

= 67a

_ 32ma’
105

EXERCISE

Q 1. Find the volume of the solid generated by revolving about x-axis the
loop of a?y? = x? (a>—x?).

Q 2. Find the volume by the revolution of the loop of the curve
y? (a—x) = x* (a + X).

Q 3. The loop of the curve w ay* = x (x—a)? revolves about x-axis. Find the
volume of the solid generated.

Q 4. Find the volume of the solid formed by the revolution of the curve
y? (2a—x) = x* about its asymptote.

Q 5. The part of the curve y? = x*> (1-x?) between x = 0 and x = 1 rotates
about the x-axis. Obtain the volume of the solid thus generated.

SURFACE OF A SOLID OF REVOLUTION
INTRODUCTION :

The surface generated by the boundary of a plane area is called the
surface of revolution.

Art : Prove that the curved surface of solid generated by the revolution
about the x-axis, of the area bounded by the curve y = f(x), the x-axis and the

b
ordinates x =a & x = b is j2nde; where S is the length of the arc of the

curve measured from a fixed point on it to any point P(x, y)
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Sol. : Let CD be the arc of the curve y = f(x) lying between the ordinates x
= aand x = b. Take two points P (x, y) and Q(x + 0X, y + dy) on the curve
close to each other and let PM and QN be their ordinates.

let 6s = elementary arc length PQ

and S = Area of the elementary zone traced out by the revolution
of the arc PQ about OX.

To know the surface generated by the revolution of the arc CD, we
have the curved surface of the solid generated by the revolution of the area
MNQP about the

L

x-axis lies in m}‘!él-gnitude between the curved surfaces of the two right circular
cylinder, each of thickness s, one of which has the radius PM (= y) and the
other QN (= y + 0y)

21yds < 0S < 27 (y + Oy) Os

oS
= 27ty<g<27t(y+8y)

When 6S — 0, dy — 0 and we get

— =2ny
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= dS =2myds
By integrating we get

b b
[ds = [2myds

—~ S= j.Znyds

Remarks : Since we proved that the surface area of the solid generated
by the revolution about the x-axis of the area bounded by the curve y = f(x),
the x-axis, the ordinates x = a and X = b is

b b 2
ds ds dy
2myds 2ny —dx = _ 14| =
! or ! dx where i ( dxj

Hence the surface area of the solid generated by the revolution about
the y = axis of the area bounded by the curve y = f(x), the y-axis, the absissae
y=candy=dis

b
J. 2ntxds

Solved Examples

Example 1. Find the area of the surface formed by the revolution
of y? = 4ax about x-axis by the arc from vertex. to the end of the
latus rectum.

Sol. : Given =n of the curve is
y’=4ax L (1)
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S
TH

1a. - Zul

= Y= 2\/;'\/; = 2\/;)(%

dy _ 2\/;.%)(_%

Ja

X

a+Xx
~ Jx

If S denotes the surface, then

Required surface = I2nydx
0
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— QRIZ\/_\/— \/il/i—xdx

— 47:\/;]1‘(21 + X)%

a

(a+ X)V u

—+1
2

475\/_

= 475\/5%[(23)% —a%}

- 8TC\/_[ 3/2((2)3/2 1)]

= %ﬂ:az(Z\/E— 1)

Example 2 : Show that the surface area of a sphere of radius ‘a’ is 47 a’.

Sol. : Given equation of sphere is

X2+ y?=al
y? =a?— x2
y = (2% — x?)1?
d 1
d_i — E(az_ X2)71/2 (—2X)
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!

If S denotes the surface. Then

Required surface = 2_[27Tyd5
0

a 2
= 2-27[-[\/212—)(2' 1+(d—yj -dx
0 dx

a 2
=4nI\/a2—x2- 1+—> dx
0

2 2
a —X

a 2 2 2
[ 2 > Va  —X +X
=4"J. S I
0 a —X

= 4n_a[adx
0

a
= 4ra ‘X‘O
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= 4ma [a — 0]

= 4ma’
Example 3 : Find the surface of the solid generated by the revolution of the
curve x*? + y?? = a?? about the x-axis.

Sol. : Given equation of the curve
X2/3 + y2/3 - a2/3

y2/3 — a2/3 _ X2/3

y — (32/3 _ X2/3)3/2

dy 3 2/3 2/3\1/2 [ 2 %J
— = = _ —-=X
dx 2 (a x) 3

_(/ _/)/
7

If S denotes the required surface, then

S=2 j.2nde
0

= 2ni(a% —x%)%-, /1+(3—zj2dx

= 47‘.?(3% —x%)%-\/uﬁdx
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Q. 1.

= 47::[(3% —x%)%- %dx

x/3

_4n31/3i(a% — x% )% (—X% )dx

0

— 1/3.2-2 _(22/3)5/2
= —4na 5 2[0 (a*”)"?]

121a’
= _4ralB-= 353 =
ma 5 a 5

EXERCISE

Find the area of the surface formed by revolving x? + 4y* = 16 about
X-axis.

. A loop of 8a% y* = x* (a? — x?) revolved about x-axis. Find the surface

of solid formed.

. Find the curved surface of the solid generated by the revolution about

the x-axis of the area bounded by the parabola y? = 4ax, the ordinate
x = 3a and y-axis.



