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STATISTICS

III Semester (B.A./B.Sc)

Paper Code : ST 301 (Practical) Title : Statistical Computing-III

Maximum Marks : 50

External Assessment : 25

Internal Assessment : 25

Objectives : The objective of the course is to expose the students to the real life
applications of Statistical Tools.

Syllabus : There shall be at least fifteen computing exercises covering the
applications of Statistics based on the entire syllabus of Course ST
301 (Theory).

Distribution of Internal Assesment (25 Marks)

(i) I Assessment : 06 marks

(ii) II Assessment : 06 marks

(iii) Class Test : 08 marks

(iv) Attendance : 05 marks
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STATISTICS
III Semester (B.A./B.Sc.)

Title : STATISTICAL INFERENCE

Paper Code : ST 301 (Theory) M. Marks : 100
Duration : 3 Hours Theory Examination : 80
Credit : 4 Credit Internal Ass. : 20

Objectives :

The main objectives of this course is to provide knowledge to the students
about the theory of estimation, obtaining estimates of unknown parameters
using different methods, testing of Hypothesis, Test of significance and use of
non-parametric test in the situations where parametric tests are not applicable.

Unit I

The concept of sampling distribution, standard error and its significance,
sampling distribution of Chi Square, t and F with derivations, properties of
these distributions and their inter relations.

Unit II

Estimation : Problem of estimation; point estimation, interval estimation,
criteria for a good estimator, unbiasedness, consistency, efficiency and
sufficiency with examples. Method of moments and maximum likelihood and
application of these method for obtaining estimates of parameters of binomial,
Poisson and normal distributions, properties of M.L.E’s (without proof), merits
and demerits of these methods.

Unit III

Testing of Hypothesis : Statistical hypothesis, Null and alternative hypothesis,
simple and composite hyothesis, two types of error, critical region, power of
test, level of significance. Best Critical Region, NP Lemma, its applications
to find most powerful in case of binomial. Poisson and normal distributions.
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Unit IV

Small sample tests based on t, F and Chi-square distribution and test based on
normal distribution, confidence interval for single mean, difference of means
and variance (only for normal case) confidence interval for single mean,
difference of means and variance (only for normal case). Test of signficance
for large samples for attributes and variable, proportions and means, single
sample, two samples (both paired and independent).

Unit V

Non-parametric tests : Concept of Non-parametric tests, advantages of Non-
parametric tests over parametric tests. Sign test for single sample and two
sample problems (for paired and independent samples), Wilcoxon-signed rank
test, Mann-Whitney U-test, run test. Median test and test for independence
based on Spearman’s rank correlation.

Note for Paper Setting :

The question paper will contain three Sections. Section A will contain
compulsory ten very short answer type questions of 1 mark each. Section B
will contain 7 short answer type questions of 5 marks each at least one question
from each unit and the student has to attempt any five questions. Section C
will contain 10 long answer type questions, two from each unit, of 9 marks
each and the student has to attempt five questions selecting one from each
unit.

Internal Assessment (Total Marks : 20)

20 marks for theory paper in a subject reserved for internal assessment shall
be distributed as under :

(i) Class Test : 10 marks

(ii) Two Written Assignments/Project Reports : 10 marks (05 marks each)

Books Recommended

1. Goon, Gupta and Dass Gupta : An outline of statistical inference Vol-II

2. H.C. Saxena; Statistical inference.

3. Gibbons, J.D. : Non-parametric statistical inference.

4. Kendall and Struart: The advanced theory of statistics Vol-II
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5. Connor W.J. : Practical Non-parametric Inference

6. Hogg. V. and Craig A.T. : Introduction of Mathematical Statistics.

7. Mood and Graybill : An introduction to theory of Statistics.

8. Srivastava and Srivastava : Statistical Inference : Testing of Hypothesis
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Unit 1  Lesson 1 

CONCEPT OF SAMPLING DISTRIBUTION AND SAMPLING 

DISTRIBUTION OF CHI-SQUARE 

Structure: 

1.1   Introduction 

1.2 Objectives  

1.3 Concept of Sampling Distribution 

1.4 Chi-Square distribution  

1.5 Derivation of Chi-square ( 2 ) distribution 

1.6 Moment generating function of Chi-square ( 2 ) distribution 

1.7 Limiting form of Chi-square ( 2 ) distribution 

1.8 Mode and Skewness of 2 -Distribution 

1.9 Additive Property of 2 -variates.  

1.10 Applications of Chi-square distribution 

1.11 Relation between F and 2 distribution 

1.12 Self assessment question. 

 

1.1 Introduction 

We know how samples can be taken from populations and can use sample 

data to calculate statistics such as the mean and the standard deviation. If we apply 

what we have learned and take several samples from a population, the statistics we 
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would compute for each sample need not be the same and most probably would 

vary from sample to sample. 

Suppose our samples each consist of eight 20-year-old men from a city 

with a population of 100,000. By computing the mean height and standard 

deviation of that height for each of these samples, we would quickly see that the 

mean of each sample and the standard deviation of each sample would be 

different. 

 A probability distribution of all the possible means of the samples is a 

distribution of the sample means. Statisticians call this a sampling distribution of 

the mean. 

Describing Sampling Distributions 

Any probability distribution (and, therefore, any sampling distribution) can 

be partially described by its mean and standard deviation. 

In the above example, the sampling distribution of the mean can be 

partially described by its mean and standard deviation. 

 Understanding of sampling distributions allows statisticians to take 

samples that are both meaningful and cost effective due to the fact that large 

samples are very expensive to gather, decision makers should always aim for the 

smallest sample that gives reliable results. 

 In describing distributions statisticians have their own shorthand and 

when they use the term standard error to describe a distribution they are 

referring to the distribution standard deviation Instead of saying “the Standard 

deviation of the distribution of Sample means” they say “the standard error of the 

mean.” which indicates how spread out (dispersed) the means of the samples are.  

Chi-square test is one of the most commonly used tests of significance. 

The chi-square test is applicable to test the hypotheses of the variance of a normal 
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population, goodness of fit of the theoretical distribution to observed frequency 

distribution, in a one way classification having k-categories. It is also applied for 

the test of independence of attributes, when the frequencies are presented in a two-

way classification called the contingency table. It is also a frequently used test in 

genetics, where one tests whether the observed frequencies in different crosses 

agree with the expected frequencies or not. 

 

1.2  Objectives 

Understanding of sampling distributions will enable the students to have 

basic knowledge  about the behavior of sampling distributions so that samples that 

are both meaningful and cost effective can be taken, due to the fact that  large 

samples are very expensive to gather, decision makers should always aim for the 

smallest sample that gives reliable results. 

The knowledge of Chi-square test will acquaint the learners to test the 

hypotheses of the variance of a normal population, goodness of fit of the 

theoretical distribution to observed frequency distribution, in a one way 

classification having k-categories. It is also applied for the test of independence of 

attributes, when the frequencies are presented in a two-way classification called 

the contingency table. It is also a frequently used test in genetics, where one tests 

whether the observed frequencies in different crosses agree with the expected 

frequencies or not. In short the main objective of this lesson is to  

 To introduce the Chi Square distribution and learn how to use them in 

statistical inferences 

 To recognize situations requiring the use of Chi-square test 

 To use Chi square test to check whether a particular collection of data is 

well described by a specified distribution 
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 To see whether two classifications of same data are independent of each 

other 

 To use Chi square distribution for confidence intervals and testing 

hypotheses about a single population variance 

 

1.3 Concept of Sampling Distribution 

Distribution relating to an estimate of a specific population parameter is 

called a sampling distribution of that estimate. Suppose, for example, that we 

wish to estimate the mean family income of a particular district in a given year on 

the basis of a sample of say of 200 families. Assume that we use mean of the 

sample to estimate the population (family income of the district) mean. We can 

draw an infinite number of samples from the district and calculate the value of the 

sample mean from each sample. These values can now be arranged in the form of 

a (frequency) distribution which would be called a sampling distribution of 

sample mean. Note that although the population of all families in the district is a 

finite one, the number of samples that we can draw from this population is infinite 

as long as we allow each family to be included in any sample. Such sampling is 

called sampling with replacement. We would know all about the possible behavior 

of our guesses by studying the resulting sampling distribution. Had we used some 

other estimator, e.g., mode or median in place of mean, the resulting distribution 

would have been called sampling distribution of mode or median. As such we can 

obtain sampling distribution of any estimator or test statistic. 

We did not refer to size of the- sample while understanding the concept of 

sampling distribution, it is quite obvious that samples of different sizes give 

different types of information about the population from which they are drawn. To 

avoid the effects that are due to the change in size of the samples, a sampling 
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distribution always refers to samples of the same size. The effects of’ changing the 

sample size are then studied by comparing the different sampling distributions 

built with different size of samples. 

Moreover, it can also be seen that sampling distribution of sample mean, in 

fact, is a probability distribution; because the income of the family as well as the 

mean income of the sample (drawn from the district), both are random variables. 

But how does sampling distribution help to obtain a good or reliable 

guess? 

Suppose we have obtained the sampling distribution of sample mean for 

the above example of family incomes. In case the mean of the sampling 

distribution turns out to be the value which is equal to the true value of the 

parameter, then the mean is said to be a good guess (or a good estimate) for the 

population parameter. To generalize, we say that an estimator is said to be a good 

estimator if the mean of the sampling distribution of that estimator is found to be 

equal to the true value of the parameter. An estimator would be a perfect estimator 

if its sampling distribution is concentrated entirely in one point and the point is 

also the true value of the parameter. 

But in practice perfect estimators are very rare and can be obtained only if 

there is no variation in the population so that every sample drawn from the 

population gives rise to same mean value which also happens to be the true value 

of the parameter. Naturally, therefore, we have to be satisfied by less than a 

‘perfect guess’; but again one can ask—to what limit? Statisticians provide this 

limit by stating some properties of an estimator that are commonly considered 

desirable for an estimator to be called a good estimator. The desirable statistical 

properties fall into two categories: small sample (or finite-sample) properties and 

large sample (or asymptotic) properties. Underlying both these sets of properties is 

the notion that an estimator has a sampling distribution. 
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Usually parameters are unknown and statistics are used as estimates of 

parameters. The probability distribution of a statistic is called its ‘sampling 

distribution’  

Remark;-The value of a statistic varies from sample to sample; but the 

parameter remains a constant However, since the parameter is constant it has 

neither a sampling distribution nor a standard error. 

 

1.4 Chi-Square distribution  

So far, we have been discussing the distribution of mean obtained from all 

possible samples, or a large number of samples drawn from a normal population, 

distributed with mean  and variance 
n

2  .  

Now we are interested in knowing the distribution, of sample variances s2 
of these samples. Consider a random sample of size n. Let the observations of this 
sample be denoted by x1, x2,...,xn . 

We know that the variance, 
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1      for i = 1, 2,. . . n. 

A quantity 2
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i xx

, which is a pure number, is defined as 2
k .  

The distribution of the random variable 2
k  which was first discovered by 

Helmert in 1876 and later independently given by Karl Pearson in 1900 when Karl 

Pearson used it for frequency data classified into k-mutually exclusive categories.  

  Another way to understand chi-square is: if X1, X2, . . .Xn are n 

independent normal variates with mean zero and variance unity, the sum of 

squares of these variates is distributed as chi-square with n degrees of freedom.  
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More precisely, the square of a standard normal variate is known as a chi-

square variate with 1 degree of freedom (df.).           

   Thus if )1,0(~),(~ 2 NXZthenNX



   and  

  
2

2 






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
XZ is a chi-square variate with 1 d.f. 

In general if Xi, (i = 1, 2, ..., n) are n independent normal variates with 

means i and variances 2
i  (i = 1, 2, ..., n), then 
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1.5 Derivation of Chi-square ( 2 ) distribution 

If Xi, (i = 1, 2, ..., n) are n independent normal variates with means i and 

variances a 2
i  (i = 1, 2, ..., n), then we want the distribution of 
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which is the m.g.f of a Gamma variate with parameters 
2
1 and n

2
1  

Hence, by uniqueness theorem of m.g.f’s, 
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which is the required p.d.f of Chi-square distribution with n degrees of 

freedom. 
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 If a r.v. X has a chi-square distribution with n d.f., we write 2
)(~ nX 

and its p.d.f is 

f(x)= 


 xxe
n

nx
n 0;

)2/(2
1 1)2/(2/

2/  

 Normal distribution is a particular case of 2 -distribution when n = 1, 

since for n= 1, 
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1.6 Moment generating function of Chi-square distribution 
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1.7 Limiting form of Chi-square ( 2 ) distribution for large degrees of 

freedom 

Let X~ )(2 n  then  m.g.f. of a 2 -variate with n degrees of freedom is 

given by 

12,)21( 2/   tt n  

   The m.g.f. of standard normal variate Z is  

)/(.)( )(/)(  
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Since for Chi-square ( 2 ) distribution mean n and variance n22   
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Where )( 2/1nO  are the terms containing 2/1n and higher powers of n in 

the denominator 

Now  
2
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  nasetM t
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2/2

)(  

which is the m.g.f. of a standard normal variate. Hence, by uniqueness 
theorem of m.g.f. Z is asymptotically normal. In other words, standard 2  variate 
tends to standard normal variate as n .  

Thus, 2  distribution tends to normal distribution for large d.f. 
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1.8               Mode and Skewness of 2 -Distribution             

                         Let X ~ 2 (n). so that  

                       f(x)= 


 xxe
n

nx
n 0

)2/(2
1 1)2/(2/

2/                             

……..(1) 

Mode of the distribution is the solution of 0)(  xf   and 0)(  xf f''(x) 

Logarithmic differentiation w.r.to x in (1) gives: 
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
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2
2  

Since 0)( xf , 20)(  nxxf   

It can be easily seen that at the point, x = (n - 2), 0)(  xf  

Hence mode of the chi-square distribution with n d.f. is (n -2). 

We can write 
DS
ModeMeanSkewness

.


  

    
nn

nn 2
2

)2(



  

Since Pearson’s coefficient of skewness is greater than zero for n 1, the 
2 distribution is positively skewed.  

 

1.9 Additive Property of 2 -variates.  

The sum of independent chi-square variates is also a 2 -variate. More 

precisely, if iX , (i = 1, 2, ..., k) are independent 2 -variates with ni, d.f  

respectively, then the sum


k

i
iX

1
, is also a chi-square variate with 



k

i
in

1
d.f 
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Proof:- We have kittM in
X ,......,2,1)21()( 2/    

The m.g.f of the sum 


k

i
iX

1
, is given by 
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which is the m.g.f of a 2 -variate with (n1 + n2 + ... + nk) d.f. Hence by 

uniqueness theorem of m.g.f ‘s, 


k

i
iX

1
is a 2 -variate with 



k

i
in

1
 d.f 

Note; Converse of above theorem is also true, 

 

1.10 APPLICATIONS OF 2 -DISTRIBUTION 

 2 test for Inferences About a Population Variance: Suppose we 

want to test if a random sample n21 ..xx,x  ,has been drawn from a normal 

population with a specified variance 2
0

2   (say). Under the null hypothesis that 

the population variance is 2
0

2   , the statistic 
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xxxx n
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i
i
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i

i  

               

follows chi-square distribution with (n -1) d.f. 

By comparing the calculated value with the tabulated value of 2  for (n -

1) d.f at certain level of significance (usually 5%), we may retain or reject the null 

hypothesis. 
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If the sample size n is large (>30), then we can use Fisher’s approximation   

and apply Normal Test. 

)1,12(~2 2  nN    

so that    )1,0(~)12(2 2 NnZ   

 

 2 test for Goodness of Fit Test. This test is used for testing the 

significance of the discrepancy between theory and experiment was given by Prof. 

Karl Pearson and is known as “Chi-square test of goodness of fit”. It enables us to 

find if the deviation of the experiment from theory is just by chance or is it really 

due to the inadequacy of the theory to fit the observed data. 

         If fi (i =1, 2, ..., n) is a set of observed (experimental) frequencies and 

ei (i = 1, 2,n) is the corresponding set of expected (theoretical or hypothetical) 

frequencies, then Karl Pearson’s chi-square, given by                      
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
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
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
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ii ef
e

ef
111

2
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The above defined statistic  

follows chi-square distribution with (n - 1) d.f.  

 

 2 Test of Independence of Attributes: Let us consider two 

attributes A divided into r classes A1, A2, ..., Ar and B divided into s classes B1, 

B2, ..., Bs. Such a classification in which attributes are divided into more than two 

classes is known as manifold classification. The various cell frequencies can be 

expressed in the table known as r x s manifold contingency table where (Ai) is the 

number of persons possessing the attribute A, (i = 1, 2, ..., r), (Bj) is the number of 
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persons possessing the attribute Bj (j = 1, 2, ..., s) and (AiBj) is the number of 

persons possessing both the attributes Ai and Bj, (i = 1, 2, ..., r;j = 1, 2, ..., s). 

Here the problem is to test if the two attributes A and B under 

consideration independent or not. 

Under the null hypothesis that the attributes are independent, the 

theoretical frequencies are calculated by using 

                 
sizesample

totalcolumnjthtotalrowitheij


              

  the test statistic in this case is given by 

,
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2
2 
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 
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n

i ji
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  Where ije is the expected frequency in column i and row j 

     fij = observed frequency for contingency table category in column i and 

row j which is distributed as a 2 -variate with (r - 1) (s -1) degrees of freedom. 

1.11 Relation between F and 2 distribution 

In F (n1, n2) distribution if we let 2n , then F follows 2 -distribution 

with n1 d.f.  

Proof. We have    2/2/
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As the limit 2n  we get 
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Hence in the limit, on using (1)  and(2)  the p.d.f of Fn1
2   becomes 
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Which is p.d.f of 2 with n1 degrees of freedom 

 

1.12 Self assessment question 

1. Explain why we call Chi-square distribution as sampling distributions? 

2. Write the parameters of the Chi-square distribution: 

3. In what situation Chi-square distribution tend to normal distribution 

derive the condition for the same 
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4.By using m.g.f of Chi-square distribution find mean , variance, 3 , 4  

skewness and kurtosis  

[Hint: Mean = n,   Variance = 2n,  3 =8n,  4 = 48n + 12n2     

n
8

1  ,         312
2 

m
] 

5. State the assumptions underlying Chi-Square test when applied as the 

test of significance for testing of null hypotheses. 

6. A random sample is drawn from a normal population. The data give 

sample size and sample variance only. What statistic would you use to test the 

hypothesis that the population variance has a particular value ? Give reasons. 

7. State applications of 2 distribution. 
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Unit 1  Lesson 2 

DISTRIBUTION AND ITS PROPERTIES 

Structure: 

2.1   Introduction 

2.2 Objectives  

2.3 Concept of t distribution and its derivation 

2.4 Constants of t-distribution  

2.5 Limiting Form of t-distribution 

2.6 Graph of t-distribution  

2.7 Application of t distribution 

2.8 Exercises 

2.9 Self assessment question 

2.1 Introduction 

This distribution was discovered by W.S. Gosset in 1908. The statistician 

Gosset is better known by the pseudonym ‘student’ and hence t-distribution is 

called student’s t-distribution. He derived the distribution to find an exact test of a 

mean by making use of estimated standard deviation, based on a random sample 

of size n. R.A. Fisher in 1925 published that t-distribution can also be applied to 

the test of regression coefficient and other practical problems. 

2.2 Objectives  

Understanding the sampling distributions enable the learners to have basic 

knowledge  about the behaviour of sampling distributions so that meaningful and 

cost effective  samples in order to apply these samples in test of significance. In 
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fact, decision makers should always aim for the smallest sample that gives reliable 

results. 

The knowledge of t distribution and its properties test will give the  

learners the basic idea to test the hypotheses about single mean, two means, 

difference of two means, to test the significance of the observed sample 

correlation etc. This Lesson will also give us information about its inter-relations 

with the other distributions etc  

 To introduce the t distribution and learn how to use them in statistical 

inferences 

 To recognize situations requiring the use of t test 

 To use t test to the hypotheses about single mean, two means, difference of 

two means, to test the significance of the observed sample correlation etc. 

2.3 Concept of t distribution and its derivation 

While deriving and defining t distribution we make use of the following 

assumptions 

Assumption for Student’s t-test. The following assumptions are made in 

the Student’s t-test 

(i) The parent population from which the sample is drawn is normal. 

(ii) The sample observations are independent, i.e., the sample is random. 

(iii) The population standard deviation  is unknown. 

 

Student’s t distribution. Suppose  x1,x2,...xn be a random sample of size n 

drawn from a normal population with a specified mean, say   and variance 2 . 

Then  
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The Student’s t- statistic  is given by 

n
s
xt 

   

where 



n

i
ix

n
x

1

1   and  






n

i
i xx

n
s

1

22 )(
1

1  is an unbiased estimate of 

population variance 2  

The above defined statistic follows student’s t distribution with )1(  n  

d.f with p.d.f given by 
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Remarks about t distribution 

 If we take  = 1 in the above expression (1) we get: 

    
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which is the p.d.f. of standard Cauchy distribution. Hence, when  = 1, 

Student’s t distribution reduces to Cauchy distribution. 

Derivation of Student’s t-distribution. The Student’s t- statistic is given by 

n
S
xt 

  This expression can be rewritten as 

1/
)()(

2

2

2

2
2





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
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xnt  
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Since ix , (i = 1, 2, ..., n) is a random sample from the normal population 

with mean   and variance  2  so that     

)1,0(~),(~
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N
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x
nNx


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Hence 
n

x
2

2)(


  being the square of a standard normal variate is a chi-

square variate with 1 d.f. Also 2

2


ns  is a chi-square variate with (n-1) degree of 

freedom 

Further since x  and s2 are independently distributed 
1

2

n
t  being the ratio 

of two independent 2 -variates with 1 and (n -1) d.f. respectively, is a variate 
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This is the required probability density function of Student’s t-distribution 

with )1(  n  d.f.  
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Remark-Factor 2 disappears since me integral from  to  must be 

unity. 

To decide about the acceptance or rejection of null hypothesis we now 

compare the calculated value of t   with the tabulated value at certain level of 

significance . If calculated t >tabulated t, null hypothesis is rejected and if 

calculated t < tab. t, H0 may be accepted at the level of significance adopted for 

(n-1) degree of freedom. 

 

Importance of Student’s t-distribution in Statistics. W.S.Gosset,  who 

wrote under pseudonym (pen-name) of Student defined his t in a slightly different 

way, viz., t= 2)( x )/s and investigated its sampling distribution, , Prof. R.A. 

Fisher, later on defined his own ‘t’ and gave a rigorous proof for its sampling 

distribution in 1926. The salient feature of‘t’ is that both the statistic and its 

sampling distribution are functionally independent of  , the population standard 

deviation. 

The discovery of‘t’ is regarded as a landmark in the history of 

statistical inference. Before Student gave his ‘t’, it was customary to replace 2

in 
n

xZ



  by its unbiased estimate to give          

n
S
xt 

 and then normal test 

was applied even for small samples.  

It has been found that although the distribution of t is asymptotically 

normal for large samples it is far from normality for small samples. 

 The Student’s t ushered in an era of exact sample distribution (and tests) 

and since its discovery many important contributions have been made towards the 

development and extension of small (exact) sample theory. 
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Confidence or Fiducial Limits for . 

 If 05.0t is the tabulated value of t for )1(  n d.f. at 5% level of 

significance, i.e.,  

             05.0)( 05.0  ttP  95.0)( 05.0  ttP  

 then 95% confidence limits for   are given by: 

   05.005.0 .,. t
nS

xeitt 


 nStxnStx 05.005.0   

 

Thus, 95% confidence limits for are nStx 05.0  

Similarly, 99% confidence limits for   are nStx 01.0  

where t0.01 is the tabulated value of t for v = (n-1) d.f at 1% level of 

significance. 

 

Fisher’s ‘t’ (Definition). It is the ratio of a standard normal variate to the 

square root of an independent chi-square variate divided by its degrees of 

freedom. If   is a N(0, 1) and 2 is an independent chi-square variate with n d.f., 

then Fisher’s t given by 

n
t

2


   

and it follows Student’s ‘t’ distribution with n degrees of freedom and its 

p.d.f is given by 
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Which is the probability density function of Student’s t-distribution with n 

d.f 

Hence, Student’s ‘t’ may be regarded as a particular case of Fisher’s ‘t’  

Remark-Since     
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distributed independently as chi-square variate with (n-1) d.f. Hence 

Fisher’s t is given by 







)1(2 n
t

s
xn

nx
xn )(

)1/()(
.)( 





  

ns
x

/
)( 

     ………(3) 

 And it follows Student’s t-distribution with (n -1) d.f.Now, (3) is same as 

Student’s ‘t’ .Hence Student’s ‘t’ is a particular case of Fisher’s ‘t’ 

 

2.4     Constants of t-distribution 

Since f(t) is symmetrical about the line t=0, all the moments of odd order 

about origin vanish, i.e., 
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Note: (i) Moment generating function of this distribution does not 

exist             

(ii).If the random variables X1 and X2 are independent and follow chi-

square distribution with n d.f., then 2121 2/)( XXXXn  distributed as Student’s 

t with n d.f., independently of X1+ X2. 
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2.5 Limiting Form of t-distribution:. As n  , the p.d.f. of t-distribution 

with n d.f viz., 
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Hence for large d.f. t-distribution tends to standard normal distribution. 

 

 

2.6 Graph of t-distribution. The p.d.f. of t-distribution with n d.f is: 
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Where  
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Since f(-t)=f(t), the probability curve is symmetrical about the line t = 0. 

As t increases, f(t) decreases rapidly and tends to zero as t  , so that t-axis is an 

asymptote to the curve. We have shown that 
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Hence for n> 2, 2 >1 i.e., the variance of t-distribution is greater than that 

of standard normal distribution and for n > 4, 2 > 3 and thus t-distribution is 

more flat  on the top than the normal curve. In fact, for small n, we have 

    )1,0(~,00 NZtZPttP   

 

 

i.e., the tails of the t-distribution have a greater probability (area) than the 

tails of standard normal distribution. 

 

Critical Values of t. The critical (or significant) values of t at level of 

significance  and d.f  for two-tailed test are given by the equation 

      1)()( ttPttP  
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Since t-distribution is symmetric about t = 0,so we have 

        )(2)()( ttPttPttP  

  2/)(  ttP          

Therefore     )2(ttP  

)2( t  (from the Tables) gives the significant value of t for a single-tail 

test [Right-tail or Left-tail-since the distribution is symmetrical], at level of 

significance  and  d.f. Hence the significant values of t at level of significance ‘

 ’for a single-tailed test can be obtained from those of two-tailed test by looking 

the values at level of significance 2 . 

For example, 

t8(0.05) for single-tail test = t8 (0.10) for two-tail test = 1.86 

 

2.7 APPLICATIONS OF t-DISTRIBUTION 

The t-distribution has a wide number of applications in Statistics, some of 

which are enumerated below. 

(i) To test if the sample mean ( x ) differs significantly from the 

hypothetical value of the population mean 

(ii) To test the significance of the difference between two sample means. 
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(iii) To test the significance of an observed sample correlation coefficient 

and sample regression  coefficient. 

(iv) To test the significance of observed partial correlation coefficient. 

 

2.8 EXERCISES 

EXERCISE NO :-1 Show that for t-distribution with n d.f., mean deviation 

about mean is given by 

2//]2/)1[( nnn   
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EXERCISE No:-2 select the correct answer 

Student’s t-test is applicable when (a) a sample size is large, (b) a sample 

size is less 

than five, (c) a sample size is less than thirty but greater than five. 

 

EXERCISE No:-3 Check whether the following statement is correct: 

(a) t-value lies between   and   . 

EXERCISE No 4.. Find the values for the following with the help of tables  

(a) t15  when  0.05 for two tailed test 

(b) t12  when  0.02 for single tailed test 

(c) t 22 when  0.01 for two tailed test 

(d) t10 when  0.05 for single tailed test 

(e) t15  when  0.01 for single tailed test 

2.9 Self assessment questions 

1. What is Student’s t distribution? When is it used to construct a 

confidence interval estimate of the population mean? 

2. Explain the importance of t distribution as distribution as sampling 

distributions? 

3. Describe the constants of student-t distribution 

3. In what situation t distribution tends to normal distribution derive this 

result mathematically. 
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4. State the assumptions underlying Student’s t-test when applied to both 

single and two-sample problems. 

5. Define the student’s t-test. What kind of hypotheses can be tested by 

the t-test. 

6. Obtain formulae for 95% confidence limits of the mean of a normal 

population, when the mean is (i) known, (ii) unknown. 

7. Obtain the formulae for 95% C.I for mean of normal population when 

the mean is (i) Known (ii) Unknown 
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Unit 1  Lesson 3 

DISTRIBUTION AND ITS PROPERTIES 

Structure: 

3.1   Introduction 

3.2 Objectives  

3.3 Concept of F distribution and its derivation 

3.4 Constants of F-distribution  

3.5 Mode and Points of Inflexion of F-distribution 

3.6 Applications of F-distribution 

3.7 Relation between t and F distributions 

3.8 Shape of f distribution 

3.9 Exercises 

3.10 Self assessment question 

 

3.1 INTRODUCTION 

This distribution was discovered by G.W.Snedecor and named in the 

honour of the Distinguish mathematical statistician Sir R.A Fisher. It may be 

recalled that the t statistic is used for testing whether two population means are 

equal. Whenever we are required to test for the case of more than two means, this  

can be tested by comparing the sample variances using F distribution by the use of 

analysis of variance technique which consist of “separation of variation due to a 

group of  causes from the variation due to other groups”.  

F ratio is basically ratio of between column variance and between column 

variance, having found F ratio we can interpret it First, examine the denominator., 
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which is based on the variance within the samples. The denominator is a good 

estimator of 2 (the population variance) whether the null hypothesis is true or 

not. What about the numerator? If the null hypothesis is true, then the numerator, 

or the variation among the sample means, is also a good estimate of 2  (the 

population variance). As a result, the denominator and numerator should be about 

equal if the null hypothesis is true. The nearer the F ratio comes to 1, then the 

more we are inclined to accept the null hypothesis Conversely, as the F ratio 

becomes larger, we will be more inclined to reject the null hypothesis and accept 

the alternative (that a difference does exist in the effects of the three training 

methods). 

In short ,when populations are not the same, the between-column variance 

(which was derived from the variance among the sample means) tends to be larger 

than the within-column variance (which was derived from the variances within the 

samples), and the value of F tends to be large. This leads us to reject the null 

hypothesis. 

Summing up, F- distribution is a very popular and useful distribution 

because of its utility in testing of hypothesis about the equality of several 

population means, two population variances and several regression coefficients in 

multiple regression etc. As a matter of fact, F-test is the backbone of analysis of 

variance. 

In fact this sampling distribution is widely used in different ways while 

testing different null hypotheses about a variety of population parameters. 

 

3.2 OBJECTIVES 

The objectives of this lesson is 
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 To introduce the F distribution and learn how to use them in 

statistical inferences 

 To recognize situations requiring the comparison of more than two 

means or proportions 

 To compare more than two population means using analysis of 

variance 

 To use the F distribution to test hypotheses about two population 

variances 

 

3.3 CONCEPT OF F DISTRIBUTION AND ITS DERIVATION 

F-distribution: If X and Y are chi-square variates with 1 and 2  degrees 

of freedom respectively, then F-statistic is defined by 

2

1





Y
X

F  

Hence, F is defined as the ratio of two independent chi-square variates 

divided by their respective degrees of freedom and it follows Snedecor’s F- 

distribution with ( 1 , 2 ) d.f. denoted by F ~ F ( 1 , 2 )  with probability function 

given by: 
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Derivation of Snedecor’s F-distribution: Since X and Y are independent 

chi-square variates with 1 and 2  d.f. respectively, their joint probability density 

function is given by:    
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Let us transform the variables as given below 
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Integrating w.r. to u over the range 0 to , the p.d.f. of F becomes 
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which is the required probability function of F-distribution with ( 1 , 2 ) 

d.f 

 

Alternative Proof of F-distribution: If X and Y are chi-square variates 

with 1 and 2  degrees of freedom respectively, then F-statistic is defined by 
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3.4 Constants of F-distribution: 
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In particular for r =1, we have 
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3.5 MODE AND POINTS OF INFLEXION OF F-DISTRIBUTION.  

We have 
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 Taking log both sides we get 
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Solving for F we get 
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                It can be easily verified that at this point f ''(F) <0. 
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Since F> 0, mode exists if and only if 21  . 
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Hence mode of F-distribution is always less than unity. 

Hence Karl Pearson’s coefficient of skewness for F distribution is given by 

   0mod



 eMean  

since mean> 1 and mode < 1. hence F-distribution is highly positively 

skewed. 
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3.6 APPLICATIONS OF F-DISTRIBUTION 

F- distribution is a very popular and useful distribution because of its 

utility in testing of hypothesis about the equality of several population means, two 

population variances and several regression coefficients in multiple regression etc. 

As a matter of fact, F-test is the backbone of analysis of variance. 

In fact this sampling distribution is widely used in different ways while 

testing different null hypotheses about a variety of population parameters. 

F-test for Equality of Two Population Variances. Suppose we want to 

test (i) whether two independent samples xi, (i = 1, 2 n1) and yj, (I = 1, 2 

n2) have been drawn from the normal populations with the same variance σ2 (say), 

or (ii) whether the two independent estimates of the population variance are 

homogeneous or not. 

Under the null hypothesis (H0) that (i) 222  yx , i.e., the population variances 

are equal, or (ii) Two independent estimates of the population variance are 

homogeneous, the 

statistic F is given by 
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are unbiased estimates of the common population variance σ2 obtained 

from two independent samples and it follows Snedecor’s F-distribution with (v1, 

v2) d,f. where 111  n and 122  n . 
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By comparing the calculated value of F obtained by using above formula 

for the two given samples, with the tabulated value of F for (n1,n2) d.f. at certain 

leve1 of significance (5% or 1%), H0 is either rejected or accepted. 

 

 F-test for Testing the Significance of an Observed Multiple 

Correlation Coefficient:. If R is the observed multiple correlation coefficient of a 

variate with k other variates in a random sample of size n from a (k+1) variate 

population, then Prof. R.A. Fisher proved that under the null hypothesis (H0) that 

the multiple correlation coefficient in the population is zero, the statistic: 

k
kn

R
RF 1.

1 2

2 


  

follows F distribution with (k,n-k-1) d.f 

 

 F-test for Testing the Significance of an Observed Sample: 

Correlation Ratio YX . Under the null hypothesis that population correlation—

ratio is zero, the test statistic is 

),1(~
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


  

where N s the size of the sample (from a bi-variate normal population) 

arranged in h arrays 

 

 F-test for Testing the Linearity of Regression: For a sample of size 

N arranged in h arrays, from a bi-variate normal population, the test statistic for 

testing the hypothesis of linearity of regression is 
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 F-test for Equality of Several Means: This test is carried out by the 

technique of Analysis of Variance, which plays a very important and fundamental 

role in Design of Experiments in Agricultural Statistics. 

 

3.7 RELATION BETWEEN t AND F DISTRIBUTIONS 

In F-distribution with ( 21 , ) d.f. , take 1 = 1,  2  and t2 = F, i.e.,dF 

= 2tdt.  

Thus the probability differential of F transforms to 
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the factor 2 disappearing since the total probability in the range ),(   

is unity. This is the probability function of Student’s t-distribution with  d.f. 

Hence we have the following relation between t and F distributions. 

If a statistic t follows Student’s t distribution with n d.f., then t2 follows 

Snedecor’s F-distribution with (1, n) d.f. Symbolically, 

),1(
2

)( ~~ nn Ftthenttif  
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3.8   SHAPE OF F DISTRIBUTION 

As we can see in the below given figure, the F distribution has a single 

mode. The specific shape of an F distribution depends on the number of degrees 

of freedom in both the numerator and the denominator of the F ratio. But, in 

general, the F distribution is skewed to the right and tends to become more 

symmetrical as the numbers of degrees of freedom in the numerator and 

denominator increase. 

 

Here we see that the probability p(F) increases steadily at first until it 

reaches (corresponding to the modal value which is less than 1) and then slowly so 

as to become tangential at F  , i.e., F-axis is an asymptote right tail. 

3.9 EXERCISES  

1. Establish relationship between t and F distribution 

2. Write ‘Yes’ if the statements given below are correct, otherwise 

write ‘No’ 

 (a) Degrees of freedom take care of the sample size in a decision 

problem about a hypothesis. 

 (b) Randomized test also involves some statistic. 
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 (c) Each statistic has some distribution. 

 (d) Standard deviation of an estimate and standard error are the same. 

 (e) t-value lies between 0 and   . 

 (f) Z-value lies between 0 and  1 

(g) Variance of a sample can be any value between —  and +  

 3. Find the values for the following with the help of tables  

(a) F(7,11)  when  0.05 

(b) F(10,12)         when  0.02  

(c) F(5,8) when level of significance is 5% 

4. Mention important uses of F distribution. 

5. Prove that if X has the F-distribution with (m, n) if. and Y has F-

distribution with (n, m) d.f., then for every a > 0, 

 11)( 



 

a
YPaXP  

6. If F(n1, n2) represent an F-variate with n1 and n2 degrees of 

freedom, prove that F(n2, n1) is distributed as 1/F (n1, n2) variate. 

Deduce that. 





 

D
nnFPDnnFP 1),(]),([ 1221  

Or 

Show that probability points of ),( 12 nnF can be obtained from 

those of  ),( 21 nnF  
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7. Derive the distribution of 2
2

2
1 SSF  , where 2

1S  and 2
2S  are two 

independent unbiased estimates of the common population 

variance 2 , defined by 
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8. If X1, X2, X3……… Xm,Xm + 1 are independent normal variates with 

zero mean and standard deviation , obtain the distribution of 
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9. Check whether the moment generating function of F distribution 

exists or not 

10. Why larger of the two variances is taken as numerator while 

computing F statistic ? 

11 State the assumptions underlying Snedecor’s F-test when applied to 

both single and two-sample problems. 

12 Obtain formulae for 95% confidence limits of the variance of a 

normal population, when the mean is (i) known, (ii) unknown. 

13 Show that the probability curve of the distribution of F is positively 

skewed. 

14  If X has an F distribution with n1 and n2 d.f., what will be the 

distribution of 1/X and how this result can be used ? 

15 If X is t-distributed, show that X2 is F-distributed. 
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Unit 2  Lesson 4 

THEORY OF ESTIMATION 

Structure: 

4.1   Introduction 

4.2 Objectives  

4.3 Concept of Statistic and Parameter  

4.4 Theory of estimation  

4.5 Criterion for good estimator 

4.6 Unbiasedness 

4.7 Exercises 

4.8 Self assessment questions 

 

4.1 INTRODUCTION: 

Whenever we take a sample, we do so with an idea of learning. something 

about the population from which the sample is drawn. In statistical terminology, 

this learning is termed as statistical inference which is of two kinds; estimator and 

hypothesis testing.  

Everyone makes estimates. When you are ready to cross a street, you 

estimate the speed any car that is approaching, the distance between you and that 

car, and your own. Having made these quick estimates, you decide whether to 

wait, walk, or run. All managers must make quick estimates too. The outcome of 

these estimates can effect their organizations as seriously as the outcome of your 

decision as to whether to cross the street. University department heads make 

estimates of next year’s enrollment in statistics, Credit managers estimate whether 
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a purchaser will eventually pay his bills. . All, these people make estimates 

without worry about whether they are scientific but with the hope that the 

estimates bear a reasonable resemblance to the outcome. Here we can make two 

types of estimates about a population: a point estimate and an interval estimate. 

A point estimate is a single number that is used to estimate an unknown 

population parameter. An interval estimate is a range of values used to estimate a 

population parameter. It indicates the error in two ways: by the extent of its range 

and by the probability of the true population parameter lying within that range. In 

this whole process sampling and theory of probability plays a vital role. 

 The object of sampling is to study the features of the population on the 

basis of sample observations. A carefully selection sample is expected to reveal 

these features, and hence we shall infer about the population from a statistical 

analysis of the sample. This process is known as Statistical Inference. 

There are two types of problems. Firstly, we may have no information at 

all about some characteristics of the population, especially the values of the 

parameters involved in the distribution, and it is required to obtain estimates of 

these parameters. This is the problem of estimation. Secondly, some information 

or hypothetical values of the parameters may be available, and it is required to test 

how far the hypothesis is tenable in the light of the information provided by the 

sample. This is the problem of Test of Hypothesis or Test of Significance. 

 

4.2 Objectives  

On careful reading of this lesson learner will be able  

 To have the basic knowledge of theory of estimation and  

 To learn how to estimate certain characteristics of a population 

from samples 
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 To learn the strengths and shortcomings of point estimates and 

interval estimates 

 To calculate how accurate our estimates really are 

 To calculate the sample size required for any desired level of 

precision in estimation 

 

 

4.3 Concept of Statistic and Parameter, estimate and estimator 

Solution: Any statistical measure calculated on the basis of sample 

observations is called a  Statistic; e.g., sample mean, sample standard deviation., 

the proportion of defectives observed in the sample, etc. Any statistical measure 

based on all units in the population is called a Parameter; e.g., population mean, 

population standard deviation, proportion of defectives in the whole lot, etc. The 

value of a statistic varies from sample to sample; but the parameter remains a 

constant. Usually parameters are unknown and statistics are used as estimates of 

parameters. The probability distribution of a statistic is called its ‘sampling 

distribution’ and the standard deviation in the sampling distribution is called 

‘standard error’ of the statistic. However, since the parameter is constant it has 

neither a sampling distribution nor a standard error. 

The following notations will be used to distinguish between statistic and 

parameter: 
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Any sample statistic that is used to estimate a population parameter is 

called an estimator; that is, an estimator is a sample statistic used to estimate a 

population parameter. The sample mean x can be an estimator of the population 

mean  , and the sample proportion p can be used as an estimator of the 

population proportion P. We can also use the sample range as an estimator of the 

population range. 

When we have observed a specific numerical value of our estimator, we 

call that value an estimate. In other words, an estimate is a specific observed 

value of a statistic. We form an estimate by taking a sample and computing the 

value taken by our estimator in that sample. Suppose that we calculate the mean 

odometer reading (mileage) from a sample of used taxis and find it to be 98,000 

miles. If we use this specific value to estimate the mileage for a whole fleet of 

used taxis, the value 98,000 miles would be an estimate populations, population 

parameters, estimators, and estimates. 

 

4.4 THEORY OF ESTIMATION 

Whenever we take a sample, with the aim of having idea about the 

population from which the sample is drawn. In statistical terminology, this 
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learning is termed as statistical inference which is of two kinds; estimator and 

hypothesis testing. Both types of statistical inference utilise the information 

provided by the sample, for drawing some conclusions about the parameters of the 

population; yet each type of inference uses this information in different ways. The 

information by the sample is given by sample. 

Suppose we have a random sample x1, x2, ...xn on a variable x, whose 

distribution in the population involves an unknown parameter . It is required to 

find an estimate of   on the basis of sample values. The theory of estimation is 

divided into two parts: point estimation and interval estimation. The theory of 

estimation is divided into two parts: point estimation and interval estimation.  

The aim of point estimation is obtain a single value which is the best guess 

of the parameter interest. In interval estimation the object is to obtain interval 

within which the true value of the parameter may -be said to lie with some given 

level of probability which expresses the confidence we have that the value lies 

within the stipulated range. 

 

(i) Point Estimation, and    

(ii) Interval Estimation.  

In point estimation the estimated value is given by a single quantity, 

which is a function of sample observations (i.e. statistic). This function is called 

the estimator of the parameter, and the value of the estimator in a particular 

sample is called an ‘estimate’.  

In short point estimate is a single number that is used to estimate an 

unknown population parameter.  
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For example, a department head would make a point estimate if she said, 

“Our current data indicate that this course will have 350 students in the next 

class.” 

A point estimate is often insufficient, because it is either right or wrong. If 

you are told only that his point estimate of enrollment is wrong, you do not know 

how wrong it is, and you cannot be certain of the estimate’s reliability. If you 

learn that it is off by only 10 students, you would accept 350 students as a good 

estimate of future enrollment. But if the estimate is off by 90 students, you would 

reject it as an estimate of future enrollment. Therefore, a point estimate is much 

more useful if it is accompanied by an estimate of the error that might be 

involved. 

An interval estimate is a range of values used to estimate a population 

parameter. It indicates the error in two ways: by the extent of its range and by the 

probability of the true population parameter lying within that range. In this case, 

the department head would say something like, “I estimate that the true enrollment 

in this course in the fall will be between 320 and 370 and that it is very likely that 

the exact enrollment will fall within this interval.” he has a better idea of the 

reliability of her estimate. If the course is taught in sections of about 100 students 

each, and if he had tentatively scheduled five sections, then on the basis of his 

estimate, he can now cancel one of those sections and offer an elective instead. 

 Summing up we can say that in interval estimation, an interval within 

which the parameter is expected to lie is given by using two quantities based on 

sample values. This is known as Confidence interval, and the two quantities 

which are used to specify the interval, are known as Confidence Limits. 

4.5 POINT ESTIMATION—CRITERIA FOR GOOD ESTIMATORS 

The theory of estimation is divided into two parts: point estimation and 

interval estimation. The aim of point estimation is obtain a single value which is 



 52

the best guess of the parameter of interest. In interval estimation the object is to 

obtain interval within which the true value of the parameter may -be said to lie 

with some given level of probability which expresses the confidence we have that 

the value lies within the stipulated range. 

There are various methods with which we may obtain point estimation or 

point estimates of the parameters of the phenomena under study. There is 

naturally a problem of choosing the one which gives us the best estimate. Also, 

how are we to decide whether any estimate is the best or whether it is good or 

better than another obtained by a different method? That is; we need to devise a 

criterion to call an estimator a best one. We, therefore, have to do two things: (a) 

to specify various properties of an estimator that go to make it a best estimator 

and, (b) to devise different methods that could give rise to estimators that possess 

at least some of these desirable properties.  

Assume some random variable X whose distribution is characterized  by a 

specific parameter,  , which we want to estimate. Thus the parent population 

consists of all possible values of X and   is one of the parametric characteristics 

of this population. An estimator of   is denoted by ̂ and since it is obtained by 

substituting the sample observations of X into a formula, we write 

      ),......,(ˆˆ
21 nxxx   

which is read as “ ̂  is a function of   X1, X2 ,…….,Xn 

Since the accuracy of an estimator, in general, increases with the number 

of observations in the sample data, the desirable properties of the estimators are 

divided into two groups depending upon the size of sample.  

Finite sample or small sample properties refer to properties of the 

sampling distribution of an estimator based on any fixed sample size. On the other 

hand asymptotic or large sample properties are the properties of the sampling 
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distribution of the estimator which is obtained from a sample whose size 

approaches infinity 

Many functions of sample observations may be proposed as estimators of 

the same parameter. For example, either the mean or median or mode of the 

sample values may be used to estimate the parameter   of the Normal distribution 

with p.d.f.  

                         



2

2

21 /)(  xe  

Naturally we have to choose one among these estimators on the basis of 

certain criteria. The desirable properties or the main criteria for a good estimator 

obtained from small samples according to R.A. Fisher are 

(i) Unbiasedness, 

(ii) Consistency, 

(iii) Efficiency, 

(iv) Sufficiency. 

 

4.6 Unbiasedness:  

A statistic t is said to be an Unbiased Estimator of a parameter , if the 

expected value of t is. 

E(t)=    

Otherwise, the estimator is said to be ‘biased’. The bias of an estimator is 

defined as the difference between its expected value and the true value of the 

parameter. Mathematically, the bias of a statistic in estimating   is given as 

Bias= E(t) —   
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If   E(t) —  >0   t is said to be positively biased. 

     E(t) —  < 0   t is said to be negatively biased  

When the bias is positive, that is, when the mean value of the distribution 

is larger than its parameter, then the estimator is said to be upward biased. 

Conversely, when the bias is negative, the estimator is biased downwards. 

 

Since the distribution is assumed to be a symmetric one, the mean is 

shown at the centre of the distribution, and it is equal to the true value of the 

parameter in Figure on the left hand side; but is not equal to the true value of the 

parameter in Figure on the left hand side  

Remark: A concept related to bias is sampling error 

Sampling error =  ˆ  

That is, sampling error is simply the difference between the value of 

estimator and the true value of the parameter to be estimated 
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Illustration of unbiased estimator  

Let us consider the number set P = {2,4,6}.If we consider  P as a 

population, then 

Population  Mean =    = (2+4+6)/3 = 4. 

Variance = 2  = [(2-4)2 + (4-4)2 + (6-4)2]/3 = 8/3 = 2.666667. 

Standard deviation = sqrt( 2 ) = sqrt(8/3) =  1.632993. 

If P is a sample, then 

Sample mean = x  = (2+4+6)/2 = 4. 

Unbiased estimate of variance  of sample mean is 

 s2 = [(2-4)2 + (4-4)2 + (6-4)2]/2 = 8/2 = 4. 

Sample standard deviation = 242 s  

{ The formula for s2 involves dividing by n-1. In this case, n=3. Hence n-1 

= 2.} 

Now, let's consider P to be a population and draw all possible samples of 

size 2 chosen from P, with replacement. There would be 3x3 = 9 samples. 

 
Sample x  For 

sample 

2s  

for sample 

s for 

sample 

2S  for 

sample 

S for 

sample 

2,2 2 0 0 0 0 

2,4 3 2 1.414214 1 1 

2,6 4 8 2.828427 4 2 
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4,2 3 2 1.414214 1 1 

4,4 4 0 0 0 0 

4,6 5 2 1.414214 1 1 

6,2 4 8 2.828427 4 2 

6,4 5 2 1.414214 1 1 

6,6 6 0 0 0 0 

Column 

Means 

4 2.666667 1.257079 1.333333 0.888889 

 

To summarize, we have listed all samples of size 2 (with replacement) 

from a population P of size 3. We have calculated statistics for each sample of size 

2. Here is an important definition: 

A statistic used to estimate a population parameter is unbiased if the mean 

of the sampling distribution of the statistic is equal to the true value of the 

parameter being estimated. 

The mean of the sample means (4) is equal to  , the mean of the 

population P. This illustrates that a sample mean X  is an unbiased statistic. It 

is sometimes stated that X  is an unbiased estimator for the population parameter 

  .  

The mean of the sample values of s2 (2.666667) is equal to 2  , the 

variance of the population P. This illustrates that the sample variance s2 is an 

unbiased statistic. It is sometimes stated that s2 is an unbiased estimator for the 

population variance 2 .  
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Here we see that the sample statistic s is not an unbiased statistic. That is, 

the mean of the s column in the table (1.257079) is not equal to the population 

parameter   = 1.632993. 

Also, if we use the 2S  formula for samples, the resulting statistics are not 

unbiased estimates for a population parameter. Note that the means for the last 

two columns in the table are not equal to population parameters. 

In summary, the sample statistics x and s2 are unbiased estimators for the 

population mean   and population variance 2 , respectively. 

 

 4.7 EXERCISES 

Exercise:1 If x1, x2, ...xn is a random sample from an infinite population 

with  variance 2 , and 



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is a biased estimator of 2  but the bias becomes negligible for large n. Give an 

unbiased estimator of 2 here. 

Solution:- Let   and 2  be the mean and variance of the population. 

Then E(xi) =  . And  Var (xi) =  E(xi -  ) 2 = 2 for each i = 1, 2, ... n. The 

variance of the sample is 
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        ( S.D is unaffected by  change of origin) 
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n
s

1

22 )(
)1(

1
 

 

We see that 

 22

1
S

n
ns


   so that ][
1

][ 22 SE
n

nsE


  

    = 221
1




 n
n

n
n  

This shows that s2 is unbiased estimator of 2  

Note : the distinction between S2 and s2 in which only the denominators 

are different.S2 is the variance of the sample observations, but s2 is the ‘unbiased 

estimator’ of the variance ( 2 ) in the population. 

Exercise:2 Show that the sample mean based on a simple random sample 

with replacement (srswr) is an unbiased estimator of the population mean. 
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Solution:- Suppose we have a sample x1, x2, ...xn  obtained by using simple 

random sampling with replacement obtained from a finite population of size N 

i.eX1,X2,………..,XN 

We have to show that   xE   

In SRSWR any of the population members X1, X2, ... Xn  may appear at 

the i-th drawing, i.e. x is a random variable with the following probability 

distribution: 

xi X1 X2 ……

… 

XN Tot

al 

Pro

b 

1/N 1/N  1/N 1 

 

Therfore   Ni X
N

X
N

X
N

xE 



















 1..............11

21  

            = (X1+X2+………..,+XN)/N =   

Hence    



  )..(1

21 nxxx
n

ExE =

      nxExExE
n

 .....21
1  

   =  nnn //)....(_  

                        

This shows that x  is an unbiased estimator of            

[Note: This result holds in all cases of random sampling, irrespective of 

whether the sample is drawn ‘with replacement’ or ‘without replacement’ from a 

finite population or from an infinite population.] 
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Exercise:3 If  x1, x2, ...xn    is a random sample from  N (  ,1)  show that  t 

= 



n

i
ix

n
x

1

21   is an unbiased estimate of 12   

Sol: We are given ][ ixE   and nixv i ,...2,1;1)(   

         Now  222 1][)(][  ii xExivxE  

]1[]1[1][1][ 2

1

22  


n

i
i n

xE
n

tE  hence t = 



n

i
ix

n
x

1

21   is an 

unbiased estimate of 12   

Exercise:4  Show that 
)1(

)1(
1



 


nn

xx
n

i
ii

 is an unbiased estimate of 2  for 

the sample values x1, x2, ...xn     drawn on X which takes the values 0 and 1 with 

respective probabilities   and (1- ) 

Sol: Since x1, x2, ...xn  is a random sample from Bernoullian population so 

that  

            T = ),(~
1

pnBx
n

i
i


 so that E[ t ] = n  and  var (T)=n (1- ) 

)]()([
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2

)1(
)1(





nn
nn  
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Hence proved 

4.8 SELF ASSESSMENT QUESTIONS 

1. Show that  the sample mean ( x )is an unbiased estimator of the 

population mean( ) 

  xE  

2. Prove that the sample variance S2 is a biased estimator of the 

population variance 2  because 

Hint:       






  222 1][

n
nSE  

3. An unbiased estimator of the population variance 2  is given by 








n

i
i xx

n
s

1

22 )(
)1(

1
 

4. Point out the distinction between s2 and S2 

5. Let X be distributed in Poisson form with parameter show that only 

unbiased estimate of })1({exp  k , k>0 is T(x)=[-k]x so that T(x)> if 

x is even and T(x)<0 if x is odd. 
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Unit 2 Lesson 5 

THEORY OF ESTIMATION 

Structure: 

5.1   Introduction 

5.2 Objectives  

5.3 Concept of Consistency, efficiency  

5.4 Sufficiency 

5.5 Exercises 

5.6 Self assessment questions 

5.1 INTRODUCTION 

A given sample statistic is not always the best estimator of its analogous 

population parameter. If we consider a symmetrically distributed population in 

which the values of the median and the mean coincide. In this case, the sample 

mean would be an unbiased estimator of population median. Also, the sample 

mean would be a consistent estimator of the population median because, as the 

sample size increases, the value of the sample mean would tend to come very 

close to the population median. And the sample mean would be a more efficient 

estimator of the population median than the sample median itself because in large 

samples, the sample mean has a smaller standard error than the sample median. At 

the same time, the sample median in a symmetrically distributed population would 

be an unbiased and consistent estimator of the population mean but not the most 

efficient estimator because in large samples, its standard error is larger than that of 

the sample mean. 

In short the main objective of present lesson is get a better idea to decide 

among a class of unbiased estimator which one is best, consistency and efficiency 
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(in addition to sufficiency) are the criterion on the basis of which question under 

consideration can be addressed. 

5.2 OBJECTIVES  

After careful reading of this lesson learner will be able  

 To have the basic knowledge about the concepts of consistency , 

sufficiency and efficiency 

 To learn how to decide about certain characteristics of a population from 

samples 

 To calculate how accurate our estimates really are 

 To have an understanding about the criterion of good estimator 

 To decide about the best estimator 

 

5.3 CONCEPT OF CONSISTENCY, EFFICIENCY 

Consistency:  

 A statistic is a consistent estimator of a population parameter if as the 

sample size increases; it becomes almost certain that the value of the statistic 

comes very close to the value of the population parameter. If an estimator is 

consistent, it becomes more reliable with large samples. Thus, if some one is 

wondering whether to increase the sample size to get more information about a 

population parameter, find out first whether your statistic is a consistent estimator. 

If it is not, one will waste time and money by taking larger samples. A desirable 

property of a good estimator is that its accuracy should increase when the sample 

size becomes larger. That is, the estimator is expected to come closer to the 

parameter as the size of the sample increases. 
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A statistic t computed from a sample of n observations is said to be a 

Consistent Estimator of a parameter , if it converges in probability to 0 as n tends 

to infinity. This means that the larger the sample size (n), the less is the chance 

that the difference between t, and   will exceed any fixed value. Given any 

arbitrary small positive quantity , 

  0


n
n

tPLt  




ofestomator
consistentabewilltthennastVarandtEIf nnn  0][][

 

To see whether an estimator is consistent, we should therefore examine its 

bias and variance as sample size is increased. If both bias and variance decrease as 

n becomes larger, and at the limit (as n ) both become zero, then estimator 

is assumed to possess the property of consistency. This is illustrated in Figure 

which is given below, which shows that as the sample size increases from 20 to 

100 observations both bias of and its variance decrease. 

 

 Since sum of squared bias and variance is equal to the MSE, the 

disappearance of the bias and variance as n is equivalent to the 

disappearance of the MSE, so that we can also say; 
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A statistic t is said to be a consistent estimator of a parameter , if 

0][ 


tMSELt
n

 

For example, in sampling from a Normal population N ( , 2 ). both the 

sample mean and the sample median are consistent estimators 

 

Efficiency and Minimum Variance: Unbiasedness is a desirable property 

but not particularly important by itself. It is because this property tells us nothing 

about the dispersion of the distribution of the estimator. An estimator which is 

unbiased, but one which has a large variance, will frequently lead to estimates that 

are quite different from true value of the parameter. On the other hand an 

estimator which has a very small variance but is biased, is equally (and even 

more) less useful. In the light of this argument it seems desirable to examine the 

variance of the distribution of the estimator also. 

This criterion based upon the variances of the sampling distributions of the 

estimators which enables us to choose between the estimators with the comm. on 

property of consistency usually known as efficiency. Of two consistent estimators 

for the same parameter, the statistic with the smaller sampling variance is said to 

be “more efficient”. Thus if t and t’ are both consistent estimators of  , and 

)'()( tVartVar   

then t is ‘more efficient’ than t’ in estimating  , 

If a consistent estimator exists whose sampling variance is less than that of 

any other consistent estimator, it is said to be “most efficient”; and it provides a 

standard for the measurement of ‘efficiency’ of a statistic. If V0 be the variance of 

the most efficient estimator and V be the variance of any other estimator, then the 

efficiency of the estimator is defined as 
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V
VEfficiency o  

Obviously, the measure of efficiency cannot exceed 1. 

 In sampling from a Normal population N ( , 2 ), both the sample mean 

and the sample median are consistent estimators of t, but 

n
MedianVar

n
xVar

2
)(

,
)(

22 



  

Since Var ( x  ) is smaller than Var(median), mean is more efficient than 

median in estimating the parameter  . It can be shown that the sample mean is the 

most efficient estimator. Hence 

Efficiency of median .64.02

2

,
2

2

approx

n

n 







      

Asymptotic efficiency 

t is an asymptotically efficient estimator of  , if 

(a) t is consistent, and 

(b) t has a smaller asymptotic variance as compared to any other 

consistent estimator. 

The establishment of the first condition does not pose any difficulty. To 

establish whether consistent estimator satisfies the second condition is more 

difficult. It is because the variance of any consistent estimator goes to zero as 

n  
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So in the present situation when we are comparing consistent estimators, 

we choose the one whose variance goes faster to zero (as n ) and call it 

asymptotically more efficient. 

For example consider two estimators t and t* whose distributions have the 

following mean and variance; 

 





 






 

n
ntE

n
ntEMean 1][;1][: *  

nn

2

2

2
(t*)Var  ;  Var(t) :Variance 




  

Both estimators are asymptotically unbiased and consistent; since their 

bias and variance become zero as n  and we can prove that 

;*][;][ 


tELimittELimit
nn

 

;0*][;0][ 


tVarLimittVarLimit
nn

 

However, the variance of t goes faster to zero as n  . Thus t is 

asymptotically more efficient than the alternative consistent estimator t*. 

 

Minimum Variance Unbiased Estimator (MVUE):If a statistic t =t(x1, 

x2, ...xn) based on the sample of the size n is such that 

(i) t is unbiased for      for all    

(ii) It has smallest variance among the class of all the unbiased 

estimator of   

Then t is called as minimum variance unbiased estimate of  .  

More precisely t is MVUE of   if 
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 )(tE  for all    and 

)'()( tVartVar    for all    where t’ is any other unbiased estimate of   

 

5.4 SUFFICIENCY 

An estimator is sufficient if it makes so much use of the information in the 

sample that no other estimator could extract from the sample additional 

information about the population parameter being estimated. 

A statistic is said to be a ‘sufficient estimator’ of a parameter , if it 

contains all information in the sample about   If a statistic t exists such that the 

joint distribution of the sample is expressible as the product of two factors, one of 

which is the sampling distribution of t and contains  , but the other factor is 

independent of  , then t will be a sufficient estimator of   

Thus if nxxx ,........., 21 is a random sample from a population whose p.m.f 

or p.d.f is 

).( xf an d t is sufficient statistic for the estimation of ,we can write 

).(.....,)..........(),.(),.( 321  nxfxfxfxf
),...........,(),.( 321 nxxxxhtg   

 

Where ),.( tg is the sampling distribution of t and contains only  , but 

),...........,( 321 nxxxxh is independent of ,  since parameter  occurring in the 

joint distribution of all the sample observations can be contained the distribution 

of statistic t, it is said that t alone can provide all the information regarding  , 

therefore sufficient for   
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Fisher-Neyman criterion: A statistic t =t(x1, x2, ...xn) is sufficient for 

parameter if and only if the likelihood function( joint p.d.f of the sample) can be 

expressed as  





n

i
ni xxxktgxfL

1
21 ),...,(),(),(  

Where ),( tg  is the p.d.f of the statistic t and ),...,( 21 nxxxk is the 

function of sample observations only, independent of   

 

5.5 Exercises 

Exercise:-1 Examine the desirable properties (Unbiasedness, consistency, 

sufficiency and asymptotic properties ) in case of the following three estimators 

which have been proposed to estimate true mean ( ) from a random sample of 

observations on   X1, X2,………Xn  (It is assumed that parent population is 

normally distributed.) 

n
Xxi i)()(  

1
ˆ)(


 

n
Xii i  

n

XXiii

n

i
i

22
*)( 21


  

Solution:- Unbiasedness:  

(i)  



  ][1)( i

i XE
nn

XExE  

Hence x is unbiased estimator of   



 70























  1

1][
1

1][
1

1]ˆ[)(
n

XE
n

XE
n

Eii ii  

 

Hence ̂ is a biased estimator of   























n

X
XEEiii

n

i
i

22
*][)( 21 = 




n

i
iXE

n
XE

2
1 ][

2
1][

2
1  

   = 
2
1







 

n
n
2

1 = 





 

n
n
2

12  

Hence * is a biased estimator of   

Efficiency 

Only x  is to be examined for this property ( other two estimators are 

biased) 

Var ( x )
n

2
 and it can be shown that 

n

2
 is the minimum variance 

amongst the unbiased estimators of  . Thus x ’ is an efficient estimator   

Asymptotic Properties: 

 


][][
nn

LimitXLimit  

Hence x is Asymptotically unbiased estimator of   












 1
]ˆ[)(

n
nLimitELimitii

nn
 

Hence ̂ is Asymptotically unbiased estimator of   
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





 


 n

nLimitELimitiii
nn 2

12*][)(  

Hence * is Asymptotically unbiased estimator of   

Consistency: 

(i)  Var (x )
n

2
 0

2





 n
Limit
n

 

x  is consistent estimators. 
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
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Hence ̂  is consistent estimators. 






 


























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1
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4
1
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  = 2
2

2

2

4








 
n

nn  

    0
44

2
2

2

2

2











 


 n
nnLimit

n
   

Hence *  is not a consistent estimators of  . 

Asymptotic efficiency: 
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Only x  and ̂ satisfy the condition of consistency and thus needs to be 

examined for this property. x  is efficient even in case of small samples, hence it 

is asymptotically efficient as well.  

nn
nn

n
Var

22
2

2

11
1]ˆ[ 










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









 

In large samples 







1n
n will be close to infinity; as such  asymptotic 

variance of ;ˆ
2

n


  which is same as that of x .It follows, therefore, that ̂  is 

also asymptotically efficient. 

 

Exercise:-2 If  x1, x2, ...x5    is a random sample of size 5 from  normal 

population with mean  . Consider the following estimate of  estimate of    

(i) 
5

... 521
1

xxx
t


  (ii) 3

21
2 2

xxxt 


  (iii) 
3

2 321
3

xxxt 
  

Where    is such that t3 is unbiased estimate of  . Find  , are t1 and t2 

unbiased, state giving reasons which is the best among t1, t2 and t3. 

Sol: Since sample is from normal population with mean. So that 

)( ixE  nd 2)( ixv  and cov(xi, xj)=0    ; i= 1,2…n Now 

(i) E(t1)= 



5

1

5

1 5
1

5
1

ii
ix    It means that t1 is unbiased estimate of   

 (ii) E(t2)=  2)(
2
1))(

2
1

321  ExxxE    

It means that t2 is biased estimate of   
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(iii) E(t3)=    )2(
3
1

321 xxxE  or  3)2( 321  xxxE  or

032    

Now  Var(t1)= 2521

5
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Var(t2)= 2
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Var(t2)= 2
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9
5)(

9
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xV
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Since the variance of t1 is minimum so t1 is the best estimate of   

Exercise-3 Let x1, x2, ...xn  be a  random sample from  N (  , 2 )find the 

sufficient statistic for 2and  

Sol Let us write  =(  , 2 ) the  
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And t(x) ={t1(x), t2(x}= 



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i
ix  is sufficient for   and t2(x}= 2

1
)(



n

i
ix  is sufficient for 

2  
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5.6 SELF ASSESSMENT QUESTIONS 

Question:-1. When would you say that estimate of a parameter is good? In 

particular, discuss the requirements of consistency and Unbiasedness of an 

estimate. Give an example to show that a consistent estimate need not be 

unbiased. 

Question:-2. Discuss the terms (i) estimate, (ii) consistent estimate, (iii) 

unbiased estimate, of a parameter and show that sample mean is both consistent 

and unbiased estimate of the population mean. 

Question:-3 (b) If X1, X2, X3, ..., Xn,. are the sample means based on 

samples of sizes nl, n2, n3 ..., nr. respectively, an unbiased estimator 

k
xnxnxnt rr


...2211  

Has been defined to estimate  .Find the value of k.  

Question:-4 We are given that 

 


























0

,,;exp1),,( 2

and

xxxf
 

Obtain 

(i) an unbiased estimate of   when  is known 

(ii) an unbiased estimate of  when  is known 

Question:-5 

(i) Does the consistency of an estimator imply that its variance 

approaches zero as the sample size increases without limit? 
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(ii) Why is asymptotic efficiency defined only for consistent 

estimators? 

Question:-6  Examine whether following statement are true or false. 

(i) Consistent estimators re asymptotically unbiased. 

(ii) Bias and error are the two statistical terms which refer to the same 

characteristic of an estimator. 

(iii) Mean Square Error is the difference of two quantities: 

variance and square of bias. 

(iv)      Sample variance is unbiased estimator of the population variance. 

 

Question:-7  Discuss whether Unbiasedness or efficiency is the more 

desirable property of an estimator to be used to estimate the annual exports of 

each product of a developing country, when: 

(a) Suppose you wish to establish a long run average annual growth 

rate for total exports; 

(b)  Suppose you wish to establish import controls for a given year 

based on amount of foreign exchange available from exports 

average annual growth rate for total exports 
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Unit 2 Lesson 6 

METHODS OF ESTIMATION 

Structure: 

6.1   Introduction 

6.2 Objectives  

6.3 Method of Maximum Likelihood  

6.4 Exercises based on Method of Maximum Likelihood 

6.5 Method of Moments 

6.6 Exercises based on Method of moments 

6.7 Self assessment questions 

 

6.1  INTRODUCTION 

Whenever we take a sample, we do so with an idea of learning. something 

about the population from which the sample is drawn. In statistical terminology, 

this learning is termed as statistical inference which is of two kinds; estimation 

and hypothesis testing. Both types of statistical inference utilise the information 

provided by the sample, for drawing some conclusions about the parameters of the 

population; yet each type of inference uses this information in different ways. 

So far we have been discussing the requirements of a good estimator There 

are various methods of estimation which lead us to estimators that possess 

different properties. These estimators are known by the names that indicate the 

nature of the technique used in deriving the formula. The method of moments, 

least squares method and the maximum likelihood method; all three methods lead 

to estimators which are known by the names of these techniques. 
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6.2 OBJECTIVES 

The main aim of this lesson is to enable the learners to obtain the 

estimators which possess the  requirements of a of a good estimator by making use 

of the different estimation techniques such as method of moments, least squares 

method and the maximum likelihood method 

 

6.3 METHOD OF MAXIMUM LIKELIHOOD 

The most important procedure of estimation is the method of maximum 

likelihood. The basic principle underlying this technique of estimation is that 

different populations generate different samples, and that any given sample is 

more likely to have come from some population than from others. Assume that we 

obtain a sample of n—observations of whose parent population is normal. In fact 

our sample might have been generated by many different normal populations. But 

suppose the mean of our observed sample is 10. Now, we ask ourselves; to which 

population does our sample most likely belong? In general, as we have said, any 

normal population could be its parent population and the one which has mean 

equal to 10 (or near about 10) is likely to generate samples with mean equal to 10. 

As shown in the below given figure. 

 

If X1, X2, X3, ..., X11 depict 11 specific sample observations. These 

observations could have come from any of the normal populations A, B or C. The 

probability of obtaining our sample from A, or C appears to be very small, but the 
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probability of getting the same sample from population B is very high. As such we 

say that the particular sample is more likely to have come from population B than 

from populations A or C. Here we did not refer to the variance of the different 

populations, and as we know, every population is characterised by its mean and 

variance. A sample with large variance is more likely to be obtained from a 

population with large variance than from a population with a small variance. In 

other words we ought to consider combinations of specific mean and variance of 

the population in relation to combinations of specific mean and variance of the 

(observed) sample. 

With this background let us now define the maximum likelihood estimator 

in a formal way. 

 This method was initially formulated by C.F. Gauss but as a general 

method of estimation was introduced by Prof. R.A. Fisher. 

 Let x1, x2, ... xn, be a random sample from a population with p.m.f. (for 

discrete case) or p.d.f. (for continuous case)f(x,  ), where   is the parameter. 

Then the joint distribution of the sample observations viz. 

).(.....,)..........(),.(),.( 321  nxfxfxfxfL  =


n

i
ixf

1
),(   

  is called the Likelihood Function of the sample. 

The Method of Maximum Likelihood consists in choosing as an estimator 

of   that statistic, which when substituted for  , maximizes the likelihood 

function L. Such a statistic is called a maximum likelihood estimator (m.l.e.) 

denoted by 0   

Since log L is maximum when L is maximum, in practice the m.l.e. of   is 

obtained by maximizing log L. This is achieved by differentiating log L partially 

with respect to  , and using the two relations 
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0log
0











L , 0log
0

2

2















L                                     ……(1) 

 

Here L>0 and Log L are non decreasing function of L. Eq (1) can be 

rewritten by 

0101







 LogL

L
L

L
                       …….(2) 

Here (2) is termed as likelihood equation for estimating   

 

Properties of maximum likelihood estimator (m.l.e.) 

We make the following assumptions, known as the Regularity 

Conditions: 

(i) The first and second order denvatives, viz., Llog

  and Llog2

2




exist and are continuous functions of   in a range R (including the true value 0

of the parameter) for almost all x. For every   in R 

)(log 1 xFL 





 ,  )(log 22

2
xFL 










          

where F1(x) and F2(x) are integrable functions over (  , )     

(ii) The third order derivative 3

3 log


 L  exists such that 

)(log.3

3
xML 










  

where E[M(x)] <K, a positive quantity. 
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(iii)           For every   in R, 

)(loglog 2

2

2

2

























 



ILdxLLE  

is finite and non-zero. 

(iv)    The range of integration is independent of  . But if the range of 

integration 

depends  on ,then f(x, ) vanishes at the extremes depending on  .This 

assumption is to make the differentiation under the integral sign valid. 

 Under the above assumptions M.L.E. possesses a number of important 

properties,  

(1) “With probability approaching unity as n , the likelihood equation 

0log 

 L , has a solution which converges in probability to the true value 0 ”  

In other words ML.E. ‘s are consistent. The m.1.e. is consistent, most 

efficient, and also sufficient, provided a sufficient estimator sexists. 

(2) Any consistent solution of the likelihood equation provides a maximum 

of the likelihood with probability tending to unity as the sample size (n) tends to 

infinity. 

(3) (Asymptotic Normality of MLE’s). A consistent solution of the 

likelihood equation is asymptotically normally distributed about the true value 0 . 

Thus, ̂ is asymptotically 










)(

,
0

0 I
IN , as n . 

4  The m.l.e. is invariant under functional transformations. This means that 

if t is an m.l.e. of   , and g( ) is a function of  , then g(t) is the m.l.e. of g( ). 

5.     If M.L.E. exists, it is the most efficient in the class of such estimators. 
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Remark: M.L.E’s are always consistent estimators but need not be 

unbiased. For example in sampling from N ( , ) population,  

 

6.4 EXERCISES BASED ON METHOD OF MAXIMUM LIKELIHOOD 

Exercise: On the basis of a random sample find the maximum likelihood 

estimator of the  parameter  of a Poisson distribution. 

Solution:- The Poisson distribution with parameter m has p.m.f as given 

below 

).......2,1,0(
!

),( 


x
x
mexmf

xm
 

The likelihood function of the sample observations is 

L ).(.....,)..........(),.(),.( 321 mxfmxfmxfmxf n  

And 

).(log.,)..........(log).(log).(loglog 321 mxfmxfmxfmxfL n
 

)!log()log(]!log)(log[),(log
1

ii

n

i
iii xxmnmxmxmmxf  



 

   Taking partial derivative of log L with respect to the parameter m, 

m
xnn

m
xnL

m
i 





 log  

Now replacing m by m0 and equating the result to zero, 

00

log
m

xnnL
m mm










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Solving we get xm 0 , again 

x
n

x
xn

m
xnL

m mm














22

0
2

2

0

log   which is negative 

This shows that log L is maximum at m = m0 = x .That is the m.l.e.of m is 

m0= x  , the sample mean: 

Exercise: Find the maximum likelihood estimator of the variance 2 of a 

Normal population N(u, 2 ), when the parameter   is known. Show that this 

estimator is unbiased. 

Solution:- The p.d.f of Normal distribution is 

  )(;
2

1exp
2

1),,( 2
2

2 





 





 xxxf  

And its likelihood function is 







 








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2
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i
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i
i xxfL  

The logarithm of likelihood function L is  


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 
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

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     2

2
2

2
)()2log(

2
log

2 
 

 ixnn
 

Differentiating partially with respect to 2  

22

2

22 )(2
)(

2)(
log










 ixnL
    

The m.l.e. 2  of is obtained by solving 
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0
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


 ixn  

n
x i

2
2
0

)( 
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It can be shown that  4
0

2

2

2
log

0
22 











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

nL  

which is negative. Thus the maximum likelihood estimator of 2  is 

)(,)( 2
2
0 known

n
x i 

  

Again, since x1, x2, ...xn  is a random sample and  is the population mean 

we have 

22)( ixE  therefore, 

2
22

2
0

)()( 






nn

xEE i  

Thus 0
2 is unbiased estimator of 2  

 

Exercise: Find the m.l.e. of the parameters and 2  in random samples 

from a N( , 2 ) population, when both the parameters are unknown. 

Solution   )(;
2

1exp
2

1),,( 2
2

2 





 





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2
)()2(loglog

2
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
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 ixnnL  
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0)1)((2
2

1log
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0

















ixL   

This gives xeix i  00 .,.;0)(  the sample mean. He m.l.e of the 

parameter   is the 

sample mean x ( This estimator is unbiased) 

Proceeding as in the above example 

,)( 2
2
0 n

x i 
 Since parameter   is unknown it is replaced by its 

m.l.e and we use x  to get 

2
2

2
0 ,)( S

n
xx i 


 Which is the sample variance 

Exercise: If n1 trials conducted are of Bernoullian type following binomial 

distribution, find the maximum likelihood estimate of p. 

Solution. We know that probability function of binomial distribution is 

ii xnx

i
i pp

x
n

xnf 







 1)1(),( 1

1   for i=1,2………n  

The likelihood function,  
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Taking logarithm of both sides, 
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1 )1log()(logloglog  

Differentiating partially w.r.t p and equating to zero. 
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It is the trivial to show that 
1n

x is the maximum likelihood estimate of p. 

6.5 METHOD OF MOMENTS 

This is the oldest estimation method in statistics. The underlying principle 

in this method is that the sample moments reflect the population characteristics in 

the sense that the expected values of the sample moments are equal to the 

population moments. 

It was first put forward by Karl Pearson in 1894. The method of moments consists 

of equating the sample moments to the corresponding moments of distribution, 

which are the functions of the unknown parameters. Here, we equate as many 

sample moments as there are unknown parameters. Solving these equations 

simultaneously we get the estimates of the moments of the population in terms of 

sample variates. 

Here we equate the moments of the population with the corresponding 

moments of the sample, i.e. setting 

  ''
rr m  

Where   '
r = E(xr)  and '

rm = 


n

i

r
ix

n 1

1   Also '
1 =E(x)=  

These relations when solved for the parameters give the estimates by the 

method of moments. This method is applicable only when the population 
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moments exist. The method is generally applied for fitting theoretical distributions 

to observed data. 

 

Properties of the estimates obtained by the method of moments. 

 (i) Under fairly general conditions, the estimates obtained by the method 

of moments will have asymptotically normal distribution for large n. 

(ii) The mean of the distribution of estimate will differ from the true value 

of the parameter by 

a quantity of order 1/n 

(iii) The variance of the distribution of estimate will be of the type c2/n. 

(iv) In general, the deviation estimators obtained by the method of 

moments are less efficient than the maximum likelihood estimators. In particular 

cases, they are equivalent. 

 

6.6 EXERCISES BASED ON METHOD OF MOMENTS 

Exercise: Estimate the parameter np of the binomial distribution by the 

method of moments (when n is known). 

Solution:-If X~B(n,p) then its p.m.f is given by  

xnx pp
x
n

xnf 







 )1(),(   x =0,1,2…….n 
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1
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1 )(   

Setting  xnphavewem  '
1

'
1  Thus 

n
xp   
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i.e. the estimated value of p is given by the sample mean divided by the 

parameter n (known). 

Exercise: Find the estimates of  and  in the Normal population N(  ,

2 ) by the method of moments. 

Ans. Let X1, X2, ..., X n be a random sample from a normal population N(

 , 2 ) 

We know that xm  '
1

'
1    

and   22222'
1

'
22

11)( XnX
n

XX
n ii    =   

221 XX
n i  

for i =0,1,2…….n 

Therefore, x is an unbiased estimator of   whereas sample variance 

2

1
)(1





n

i
i xx

n
 is not an unbiased estimator for 2 . 

Exercise: Find the estimate of the parameter   the Poisson distribution 

!x
e x  by the method of moments. 

Solution: Let X1, X2, ..., X n be a random sample from a normal 

population a Poisson distribution P (x;  ). We know in case of Poisson 

distribution, its mean and variance are equal. The mean, 
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x
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x

x

x

x

              

    = x  

      Thus, the estimate of the parameter   by the method of moments is the 

sample mean x . 
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6.7 SELF ASSESSMENT QUESTIONS 

1. Why do the decision makers often measure the sample rather than 

the entire  population. What is the disadvantage? 

2.  Explain the shortcoming that occurs n the point estimation but not 

in an interval estimation. What measure is included with an interval 

estimation that compensate for this ? 

3. What is an estimator ? How does an estimate differ from an 

estimator? 

4. List and briefly describe the criteria of a good estimator. 

5. Describe the M.L method of estimation and discuss five of its 

optimal properties. 

6. Describe the method of moments  for estimation .What are the 

properties of the estimator obtained by the  method of moments ? 

7. What two basic tools are used in making statistical inferences? 

8. Why do decision makers often measure samples rather than entire 

populations? What is the   disadvantage? 

9. Explain a shortcoming that occurs in a point estimate but not in an 

interval estimate. What measure is included with an interval 

estimate to compensate for this? 

10. What is an estimator? How does an estimate differ from an 

estimator? 

11. List and describe briefly the criteria of a good estimator. 

12. What role does consistency play in determining sample size? 
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13. State and explain the principle of maximum likelihood for 

estimation of population parameter. 

14. Describe the M.L. method of estimation and discuss five of its 

optimal properties. 

15. Compute the likelihood function for a random sample of size n for 

the each of the following populations. 

(i) Normal ( ), 2  (ii) Binomial (n,p) 

(iii) Poisson (t)  (iv) Uniform (a,b) 

16. Describe the method of moments for estimating the parameters. 

What are the properties of   the estimates obtained by this method? 

17. Let X1, X2 ……….Xn be a random sample from the p.d.f. 

 
elsewhere

xexf x

,0
0,0),(


   

 

Estimate   using the method of moments. 

18. Explain the methods of estimation-method of moments and 

maximum likelihood. Do these lead to the same estimates in 

respect of the standard deviation of a normal population?   

Examine the properties of the estimates from the point of view of 

consistency and   Unbiasedness. 

19. For the distribution with probability function: 

.......3,2,1;
)1(!

),( 


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

x
ex

exf
x

 

Obtain the estimate of   by the method of moments. 
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Unit 2 Lesson NO.7 

CONFIDENCE INTERVAL AND CONFIDENCE INTERVAL 

Structure: 

7.1   Introduction 

7.2 Objectives  

7.3 Definition  

7.4 Meaning and interpretation 

7.5 Desirable properties 

7.6 Method of derivation 

7.7 Exercises topic 

7.8 Summary 

7.9 Self assessment Questions 

 

7.1 INTRODUCTION 

Interval estimation can be contrasted with point estimate. . A point 

estimate is a single number that is used to estimate an unknown population 

parameter. An interval estimate is a range of values used to estimate a population 

parameter. Confidence interval are commonly reported in tables or graphs along 

with point estimates of the same parameter,  to show the reliability of the 

estimates.  

 

7.2 OBJECTIVES 

In statistics, a confidence interval (C.I)is a particular type of interval 

estimation of a population parameter and is used to indicate the reliability of an 
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estimate. It is an observed interval (i.e. it is calculated from the observations), in 

principle different from sample to sample, that frequently includes the parameter 

of interest, if the experiment is repeated. How frequently the observed interval 

contains the parameter is determined by the confidence level or confidence 

coefficient. 

A confidence interval with a particular confidence level is intended to give 
the assurance that, if the statistical model is correct, then taken over all the data 
that might have been obtained, the procedure for constructing the interval would 
deliver a confidence interval that included the true value of the parameter the 
proportion of the time set by the confidence level. More specifically, the meaning 
of the term "confidence level" is that, if confidence intervals are constructed 
across many separate data analyses of repeated (and possibly different) 
experiments, the Proportion of such intervals that contain the true value of the 
parameter will approximately match the confidence level; this is guaranteed by the 
reasoning underlying the construction of confidence intervals. 

A confidence interval does not predict that the true value of the parameter 
has a particular probability of being in the confidence interval given the data 
actually obtained. An interval to have such property is called a credible interval, 
can be estimated by using Bayesian method; but such methods bring with them 
their own distinct strengths and Weaknesses. 

 
7.3 DEFINITION 

Let X be a random sample from, probability distribution with parameter 
, which is the quantity to be estimated , and let   represents the quantity not of 
immediate interest. A confidence interval for the parameter  , with confidence 
level   , is an interval with random endpoints (u(x), v(x)) determined by the pair 
of statistics u(x) and v(x), with the property 

))()((, xvxuP     

The quantities   in which there is no immediate interest are called 
nuisance parameter, as Statistical theory Still needs to find some  way to deal with 
them.The number  , With typical values close to but not greater than 1 is 
Sometimes given in the form 1  (Or as a Percentage 100% ( 1 ), where  , a 
small nonnegative number close to 0. 
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Here  ,rP  is used to indicate the probability when the random variable 
X has the distribution characterized by ),(  . An important part of this 
specification is that the random interval (U,V) covers the unknown value   with a 
high probability no matter what the true value of   actually is. 

Note that here  ,rP p need not refer to an explicitly given parameterized 
family of distributions, although it often does. Just as the random variable X 
notionally corresponds to other possible realizations of x from the same 
population or from the same version of reality, the parameters ),(   indicate that 
we need to consider other versions of reality in which the distribution of X might 
have different characteristics. 

In a specific situation, when x is the outcome of the sample X, the interval 
(u(x), v(x)) is also referred to as a confidence interval for  . Note that it is no 
longer possible to say that the (observed) interval (u(x), v(X)) has probability   to 
contain the parameter . This observed interval is just one realization of all 
possible intervals for which the probability statement holds. 

CONFIDENCE INTERVAL  AND CONFIDENCE LIMITS: Let  us 

consider a random sample xi, (i = 1, 2, ..., n) of n observations from a population 

involving a single unknown parameter , (say). With probability function  

f(x, ) and let us suppose that this distribution is continuous. Let 

 t = t(x1, x2, ..., xn) 

be a function of the sample values be an estimate of the population 

parameter  , with the sampling distribution given by  

g(t, ). 

After obtaining the value of the statistic t from a given sample, the 

problem is, “Can we make some reasonable probability statements about the 

unknown parameter  in the population, from which the sample has been drawn?” 

This question is very well answered by the technique of Confidence interval due 

to Neyman 

We choose once for all some small value of  (5% or 1%) and then 

determine two constants say, c1 and c2 such that 
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                        P(c1 <  <c2I t) = 1 -   

The quantities c1 and c2, so determined, are known as the confidence limits 

or fiducial limits and the interval [c1, c2] within which the unknown value of the 

population parameter is expected to lie, is called the confidence interval and (1- ) 

is called the confidence coefficient. 

E.g., if we take a = 0.05 we shall get 95% confidence limits. 

7.4 MEANING AND  INTERPRETATION 

The confidence interval can be expressed in terms of samples (or repeated 
samples): "Were this procedure to be repeated on multiple samples, the calculated 
confidence interval (which would differ for each sample) would encompass the 
true population parameter 90% of the time." Note that this need not be repeated 
sampling from the same population, just repeated sampling. 

The explanation of a confidence interval can amount to something like: 
The confidence interval represents values for the population parameter for which 
"the difference between the parameter and the observed estimate is not statistically 
significant at the 10% level". In fact, this relates to one particular way in which a 
confidence interval may be constructed. 

The probability associated with a confidence interval may also be 
considered from a pre-experiment point of view, in the same context in which 
arguments for the random allocation of treatments to study items are made. Here 
the experimenter sets out the way in which they intend to calculate a confidence 
interval and know, before they do the actual experiment, that the interval they will 
end up calculating has a certain chance of covering the true but unknown value. 
This is Very Similar to the "repeated sample" interpretation above, except that it 
avoids relying on considering hypothetical repeats of a sampling procedure that 
may not be repeatable in any meaningful sense. 

In each of the above, the following applies: If the true value of the 
parameter lies outside the 90% confidence interval once it has been calculated, 
then an event has occurred which had a probability of 10% (or less) of happening 
by chance. 

The probability associated with a confidence interval may also be 
coinsidered from a pre-experiment point of view, in the same context in which 
arguments for the random allocation of treatments to study items are made. Here 
the experimenter sets out the way in which they intend to calculate a confidence 
interval and know, before they do the actual experiment, that the interval they will 
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end up calculating has a certain chance of covering the true but unknown value. 
This is Very Similar to the "repeated sample" interpretation above, except that it 
avoids relying on considering hypothetical repeats of a sampling procedure that 
may not be repeatable in any meaningful sense. 

In each of the above, the following applies: If the true value of the 
parameter lies outside the 90% confidence interval once it has been calculated, 
then an event has occurred which had a probability of 10% (or less) of happening 
by chance. 

 
7.4.1 MEANING OF THE TERM "CONFIDENCE" 

There is a difference in meaning between the common usage of the word 
"confidence" and its statistical usage, which is often confusing to the layman, and 
this is one of the critiques of confidence intervals, namely  that in application by 
non-statisticians, the term "confidence" is misleading. 

In common usage, a claim to 95% confidence in something is normally 
taken as indicating virtual certainty. In statistics, a claim to 95% confidence 
simply  means that the researcher has seen something occur that happens only one 
time in  20 or less. If one were to roll two dice and get double six (which happens 
1/36th of  time , about 3%)  a few would claim this as proof that the dice were 
fixed, although statistically although statistically speaking one could have 97% 
confidence that they were. Similarly, the finding of a statistical link at 95% 
confidence is not proof, nor even very good evidence, that there is any real 
connection between the things linked. 

When a study involves multiple statistical tests, people tend to assume that 
the confidence associated with individual tests is the confidence one should have 
in the results of the study itself. In fact, the results of all the statistical tests 
conducted during a study must be judged as a whole in determining what 
confidence one may place in the positive links it produces. For example, say a 
study is conducted which involves 40 statistical tests at 95% confidence, and 
which produces 3 positive results. Each test has a 5% chance of producing a false 
positive, so such a study will produce 3 false positives about two times in three. 
Thus the confidence one can have that any of the study's positive conclusions are 
correct is only about 32%, well below the 95% the researchers have set as their 
standard of acceptance 

 
7.5 DESIRABLE PROPERTIES 

When applying standard statistical procedures, there will often be standard 
ways of constructing confidence intervals. These will have been devised so as to 
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meet certain desirable properties, which will hold given that the assumptions on 
which the procedures rely are true. These desirable properties may be described 
as: validity, optimality and invariance. Of these "validity" is most important, 
followed closely by "optimality". "Invariance" may be considered as a property of 
the method of derivation of a confidence interval rather than of the rule for 
constructing the interval. In non-standard applications, the same desirable 
properties would be sought. 

Validity: This means that the nominal coverage probability (confidence 
level) of the confidence interval should hold, either exactly or to a good 
approximation. 

Optimality: This means that the rule for constructing the confidence 
interval should make as much use of the information in the data-set as possible. 
Recall that one could throw away half of a data set and still be able to derive a 
valid confidence interval. One way of assessing optimality is by the length of the 
interval, so that a rule for constructing a confidence interval is judged better than 
another if it leads to intervals whose lengths are typically shorter. 

Invariance: In many applications the quantity being estimated might not 
be tightly defined as such. For example, a Survey might result in an estimate of 
the median income in a population, but it might equally be considered as 
providing an estimate of the logarithm of the median income, given that this is a 
common scale for presenting graphical results. It would be desirable that the 
method used for constructing a confidence interval for the median income would 
give equivalent result when applies to constructing a confidence interval of 
logarithm of the median income; specifically values at the ends of the latter 
interval would be the logarithms of the values at the ends of the former interval. 

 

7.6 METHODS OF DERIVATION 

For non-standard applications, there are several routes that might be taken 
to derive a rule for the construction of confidence intervals. Established rules for 
Standard procedures might be justified or explained via several of these routes. 
For Typically a rule for constructing confidence intervals is closely tied to a 
particular that Way of finding a point estimate of the quantity being considered. 

 
7.6.1 STATISTICS 

This is closely related to the method of moments for estimation. A simple 
example arises where the quantity to be estimated is the mean, in which case a 
natural estimate is the sample mean. The usual arguments indicate that the sample 
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a variance can be used to estimate the variance of the sample mean. A new 
confidence interval for the true mean can be constructed centered on the sample 
mean with a width which is a multiple of the square root of the sample variance. 

 

7.6.2 LIKELIHOOD THEORY 
Where estimates are constructed using the maximum likelihood principle, 

the theory for this provides two ways of constructing confidence intervals or 

confidence regions for the estimates. 

  

7.6.3 ESTIMATING EQUATIONS 
The estimation approach here can be considered as both a generalization of 

the method of moments and a generalization of the maximum likelihood approach. 
There are corresponding generalizations of the results of maximum likelihood 
theory that allow confidence intervals to be constructed based on estimates 
derived from estimation equation.  

Via significance testing 

If significance tests are available for general values of a parameter, then 
confidence intervals/regions can be constructed by including in the 100p% 
confidence region all those points for which the significance test of the null 
hypothesis that the true value is the given value is not rejected at a significance 
level of   

 
7.7.1  STATISTICAL HYPOTHESIS TESTING 

Confidence intervals are closely related to statistical significance testing. 
For example, if for some estimated parameter   one wants to test the null 
hypothesis that 0  against the alternative that 0  , then this test can be 
performed by determining whether the confidence interval for   contains 0. 

More generally, given the availability of a hypothesis testing procedure 
that can test the null hypotheses  0  against the alternative that 0   for any 
value of  . Then a confidence interval confidence level  1  with  can be defined 
as containing any number 0  for which the corresponding null hypothesis is not 
rejected at significance level  ’ 
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In consequence, if the estimates of two parameters (for example, the mean 
values of a variable in two independent groups of objects) have confidence 
intervals at a given value   that does not overlap, then the difference between the 
two values is significant at the corresponding value of  . However, this test is too 
conservative. If two confidence intervals overlap, the difference between the two 
means still may be significantly different.  

 
7.7.2  CONFIDENCE REGION 

Confidence region generalize the confidence interval concept to deal with 
multiple quantities. Such regions can indicate not only the extent of likely 
sampling error but can also reveal whether (for example) it is the case that if the  
estimate for one quantity is unreliable then the other is also likely to be unreliable. 

In applied practice, confidence intervals are typically stated at 95% 
confidence level. However, when presented graphically, confidence intervals can 
be shown at several levels, for example 50%, 95% and 99%. 

 
7.7.3  INTERVALS FOR RANDOM OUTCOMES 

Confidence intervals can be defined for random quantities as well as for 
fixed quantities as in the above. For this, consider an additional single-valued 
random variable Y which may or may not be statistically dependent on X. Then 
the rule for constructing the interval (u(x), v(x)) provides a confidence interval for 
the as-yet-to-be observed value y of Y if 

))()((, xvxuP     

Here   ,P is used to indicate the probability over the joint distribution of 
the random variables (X, Y) when this is characterised by parameters ),(  . 

Approximate confidence intervals 
For non-standard applications it is sometimes not possible to  fine rules for 

constructing confidence intervals that have exactly the required properties. But 
practically useful intervals çạn still be found. The probability c ),(   for a random 
interval is defined by 

 ),())()((Pr ,  cxvxu   

And rule for constructing the interval may be accepted as providing a 
confidence interval if 

 ),(1),(  allforc   
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 to an acceptable level of approximation. 
 

EXAMPLE: 

Find 100(1- )% confidence for (i)   (ii) 2  in normal population with p.d.f 
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Sol: Let  us consider a random sample xi, (i = 1, 2, ..., n) of n observations from 

density function ),,( 2xf  and suppose 



n

i
ix

n
x

1

1  and 






n

i
i xx

n
s

1

22 )(
1

1  then 

statistic 

n
s
xt  ~   t(n-1) 

Hence 100(1- )% confidence for   are given by  
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where t is the tabulated value of t for (n-1) degrees of freedom at  level of 

significance. Hence required level of significance is 
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 

n
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n
stx  ,  

(ii) let   is unknown =  (say) then      
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If we define chi-square as such 
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Hence reqd. confidence interval is given by 

 

         12
2/

22
)2/1(P       




  











  12

2/2

2
2

)2/1(
nsP          …………….(1) 

Now 2
2

2/

2
2

2/2

2





 
 

nsns   and 
2

)2/1(

2
2

2

2
2

)2/1(


 






 

nsns    

Hence from (1) 





 

















12
)2/1(

2
2

2
2/

2 nsnsP                             

Which is the required confidence interval 

 

7.8 Summary 

Confidence intervals is to define a )%1(100    confidence interval of all 
these values of   for which a test of the hypothesis 0   is not rejected at a 
significance level of %100 . Such an approach may not always be available 
Since  it presupposes the practical availability of an appropriate significance test. 
Naturally, any assumptions required for the significance test would carry over to 
the confidence intervals. 

It may be convenient to make the general correspondence that parameter 
values within a confidence interval are equivalent to those values that would not 
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be rejected by an hypothesis test, but this would be dangerous. In many instances 
the confidence intervals that are quoted are only approximately valid, perhaps 
derived from "plus or minus twice the standard error", and the implications of this 
for the supposedly corresponding hypothesis tests are usually unknown. 

 

7.9 SELF ASSESSMENT QUESTIONS 

1. What do you understand by confidence and explain its desirable 

properties. 

2. Obtain %)1(100   confidence interval for parameter u in the 

random sample from normal population: 

 0,0)(   uxuexdf xu  

3. Obtain %)1(100   confidence interval for unknown parameter p 

of a binomial distribution when the parameter n is known  in the 

random sample from normal population 
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Unit 3 Lesson 8 

TESTING OF HYPOTHESES 

Structure: 

8.1 Introduction 

8.2 Objectives  

8.3 Concepts Basic to the Hypothesis-Testing Procedure 

8.4 Test of Significance 

8.5 Critical region  

8.6 One-and two-tailed Tests 

8.7 Size (Level of significance) and Power of a Test 

8.8 Degrees of freedom 

8.9 P-Values  

8.10 Self Assessment Questions 

 

8.1 INTRODUCTION 

Hypotheses testing begin with an assumption; called hypotheses that we 

make about a population parameter. Then we collect sample data, produce 

sample statistics, and use this information to decide how likely it is that our 

hypothesized population parameter is correct. Say that we assume a certain value 

for a population mean. To test the validity of our assumption, we gather sample 

data and determine the difference between the hypothesized value and the actual 

value of the sample mean. Then we judge whether the difference is significant. 

The smaller the difference, the greater the likelihood that our hypothesized value 

for the mean is correct. The larger the difference, the smaller the likelihood. 
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Unfortunately, the difference between the hypothesized population 

parameter and the actual statistic is more often neither so large that we 

automatically reject our hypothesis nor so small that we just as quickly accept it. 

So in hypothesis testing, as in most significant real-life decisions, clear-cut 

solutions are the exception, not the rule.   

 

8.2 OBJECTIVES 

Objectives of this lesson is to enable the learners 

1. To learn how to use samples to decide whether a population 

possesses a particular characteristic 

2. To understand the basis of testing procedure 

4. To learn when to use one- tailed tests and when to use two-tailed 

tests 

5. To hypothesis and its types hypotheses 

6. To understand the concept of critical region and P-values 

 

8.3 CONCEPTS BASIC TO THE HYPOTHESIS-TESTING PROCEDURE 

Hypothesis testing begins by making an assumption about the population 
parameter. Then we gather sample data and determine the sample statistic. To 
test the validity of our hypothesis the difference between the hypothesized value 
and the actual value of the sample statistic will be determined. If the difference 
between the hypothesized population parameter and the actual value is large 
then we automatically reject our hypothesis. If it is small, we accept it. 

The theory of testing of Hypothesis was initiated by J. Neyman and E.S. 

Pearson. In Neyman Pearson Theory we use statistical methods to arrive at a 

decision in certain situations where there is lack of certainty on the basis of the 
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sample where size is fixed in advance while in Wald sequential theory the 

sample size is not fixed in advance but regarded as a random variable. 

 

TYPES OF HYPOTHESIS 

In attempting to arrive at decision about the population on the basis of 

sample information, it is necessary to make assumptions or guesses about the 

population parameters involved. Such an assumption is called a statistical 

hypothesis which may or may not be true. The procedure which enables us to 

decide on the basis of a sample, whether a hypothesis is true or not, is called 

Test of Hypothesis or Test of Significance. There are two hypotheses: 

• Null Hypothesis 

• Alternative Hypothesis. 

NULL HYPOTHESIS 

In tests of hypothesis, we always begin with an assumption, the null 

hypothesis. The null hypothesis asserts that there is no (significant) difference 

between the statistic and the population parameter and whatever observed 

difference is there, it is merely due to chance (fluctuations in sampling from the 

same population). Null hypothesis is usually denoted by the symbol H0. 

A hypothesis which is to be actually tested for acceptance or rejection is 

termed as null hypothesis. As the name suggests it is always taken as hypothesis 

of no difference.  The decision maker should adopt a null or neutral attitude 

regarding the outcome of the test. It is denoted by H0.In the words of prof. R.A 

Fisher 

“Null hypothesis is the hypothesis which is tested for possible 

rejection under the assumption that it is true” 
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In hypothesis testing, a statistician or decision-maker should not be 

motivated by prospects of profit or loss resulting from the acceptance or 

rejection of the hypothesis. 

Much, therefore, depends upon how the hypothesis is framed.  Hence the 

best course is to adopt the thesis of no difference. If we want to test the 

significance of difference between a statistic and a parameter or between two 

sample statistics, and then we set up null hypothesis H0 that the difference is 

not significant. This means that the difference is just due to the fluctuations of 

sampling. E.g 00 : H where 0 is some specified value of   

ALTERNATIVE HYPOTHESIS 

Any hypothesis which contradicts the null hypothesis H0 is called an 

Alternative Hypothesis and is denoted by the symbol H1.We can say that it is a 

statement about the population parameter or parameters, which gives an 

alternative to the null hypothesis (H0), within the range of pertinent values of the 

parameter, i.e., if H0 is accepted, what hypothesis is to be rejected and vice 

versa.  

It is desirable to state what is called an alternative hypothesis in respect 

of every statistical hypothesis being tested because the acceptance or rejection of 

null hypothesis is meaningful only when it is being tested against a rival 

hypothesis which should rather be explicitly mentioned.  If null hypothesis is 

00 : H where 0 is some specified value of   then alternative could be  

(1)  01 : H 00,..  orei   (Two tailed alternative) 

 (2) 01 : H          left tail (one tailed alternative) 

(3)  01 : H       right tail (one tailed alternative) 
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The Alternative Hypothesis in (1) is known as a two-tailed alternative 

and in (2) and (3) is known as left-tailed and right-tailed alternatives 

respectively. The corresponding tests of hypotheses are called two-tailed (or 

two-sided), right-tailed (one-sided) and left-tailed (one-sided) tests respectively. 

 

STATISTICAL HYPOTHESIS (Simple and Composite) 

A statistical hypothesis is a statement, an idea or an assertion about a 

population or equivalently about probability distribution characterizing a 

population which we want to verify on the basis of information available from 

the sample.  

‘A hypothesis is an assertion or conjecture about the parameter(s) of 

population distribution(s)” 

If statistical hypothesis specifies the population completely then it is 

termed as simple. If statistical hypothesis does not specifies the population 

completely then it is termed as Composite. 

Example:-1  let for a random sample nxxx ,....., 21 from a normal 

population with mean   and variance 2  the hypothesis 

00 : H  ,     2
0

2   is simple hypothesis as in  ),( 2N      

]0,[ 2
0   

Where as      (i) 0    

(ii) 2
0

2     

(iii) 0 ,   2
0

2       

(iv) 0 ,   2
0

2   are composite hypothesis 
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A hypothesis which doesn’t completely specify the ‘r’ parameters of the 

population is termed as composite hypothesis with ‘r’ degrees of freedom. A 

hypothesis may be simple or composite depending upon the alternative 

hypothesis. 

Example:-2. For instance, we consider a normal population ),( 2N , 

where 2  is known and we want to test the hypothesis, 25:0 H  against H1: 

=30. From these hypotheses we know that can take either of the two values, 25 

or 30, In this case, H0 and H1 are both simple. But generally 25:1 H  is 

composite, i.e. of the form, 25:25: 11  HorH . Likewise, simple and 

composite hypothesis for any other parameter(s) can be stated. 

 

8.4 TEST OF SIGNIFICANCE 

A research worker or an experimenter has always some fixed ideas about 

certain population parameter(s) based on prior experiments, surveys or 

experience. Sometimes these ideas might have been fixed in the mind. There is a 

need to ascertain whether these ideas or claims are correct or not by collecting 

information in the form of data. In this way, we come across two types of 

problems, first is to draw inferences about the population on the basis of sample 

data and the other is to decide whether our sample observations have come from 

a postulated population or not.  

By hypothesis we mean to give postulated or stipulated value(s) of a 

parameter. Also, instead of giving values, some relationship between parameters 

is postulated in the case of two or more populations. On the basis of 

observational data, a test is performed to decide whether the postulated 

hypothesis be accepted or not. This involves certain amount of risk. This amount 

of risk is termed as a level of significance. When the hypothesis is accepted, we 
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consider it a nonsignificant result and if the reverse situation occurs, it is called 

a significant result. 

 

STATISTICAL TEST 

A test is defined as, “A statistical test is a procedure governed by certain 

rules, which leads to take a decision about the hypothesis, for its acceptance or 

rejection on the basis of sample values.” 

USES OF STATISTICAL TESTS 

Statistical tests of hypotheses play an important role in industry, 

biological sciences, behavioral sciences and economics, etc. The use of tests has 

been made clear through a number of practical problems. 

1. A feed manufacturer announces that his feed contains forty per 

cent protein. Now to make sure whether his claim is correct or 

not, one has to take a random sample of the product and by 

chemical analysis, find the protein percentages in the samples. 

From these observed values, he would decide about the 

manufacturer’s claim for his product. This is done by performing 

a test of significance. 

2. Psychologists are often interested in knowing whether the level of 

IQ of a group of school boys is up to a certain standard or not. In 

this case, some boys are selected and an intelligence test is 

conducted. The scores obtained by them pass through a statistical 

test and a decision is made whether their IQ is up to the standard 

or not. 
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8.5         CRITICAL REGION (C.R.) 

A statistic is used to test the hypothesis H0. The test statistic follows 

some known distribution. In a test, the 

area under the probability density curve is 

divided into two regions, viz., the region 

of acceptance and the region of rejection. 

The region of rejection is the region in 

which H0 is rejected. It means that if the 

value of test statistics lies in this region, H0 (null hypothesis) will be rejected.  

The region of rejection is called a critical region. Moreover, the area of 

the critical region is equal to the level of significance . The critical region is 

always on the tail of the distribution curve. It may be on both the tails or on one 

tail, depending upon the alternative hypothesis. 

In short the value of the standard statistic beyond which we reject the 

null hypothesis; the boundary between the acceptance and rejection regions. 

 

8.6      ONE AND TWO-TAILED TESTS 

If the alternative hypothesis, H1 is of the type   0 or 0  etc., the 
critical region lies on only one tail of the probability density curve. In this 
situation the test is called one-tailed test. 

If H1 is of the type   01 : H  the critical region is towards the right 

tail as shown below 
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On contrary to this, if the alternative hypothesis, H1 is of the type    

0  the critical region lies on only one tail (left tail) of the probability 

density curve. In this situation ( 01 : H ) the critical region is towards the left 

tail 

                           

 

If the test is two-tailed, i.e., it is of the type 01 : H  then the test is 

called two-tailed test and in such a case the critical region lies in both the right 

and left tails of the sampling distribution of the test statistic, with total area 

equal to the level of significance as shown in diagram. 

                    

If the alternative hypothesis is of the type 01 : H

00,..  orei  the critical region lies at the both the tails , in this 

situation test is called two tailed test and an area equal to 2
  lies at the both the 

tails. 
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8.7 SIZE (LEVEL OF SIGNIFICANCE) AND POWER OF A TEST 

The main purpose of hypothesis testing is not to question the computed 
value of the sample statistic, but to make judgment about the difference between 
the sample statistic and a hypothesized population parameter. After stating the 
Null and Alternative Hypotheses, we have to decide what criterion to be used for 

deciding whether to accept or reject the null hypothesis. 

In testing a given hypothesis the minimum probability with which we 
would be willing to risk a type one error is called as level of significance. The 
size of a test is the probability of rejecting the null hypothesis when it is true, 
and is usually denoted by  . The level of, significance and size are synonymous 
in a practical sense. Therefore. 

]/[ 00 HHrejetP        ...(1) 

For example when we choose 5% level of significance in a test 
procedure, there are about 5 cases in 100 that we would reject the hypothesis 
when it should be accepted, that is, we are about 95% confident that we have 
made the right decision. Similarly, if we choose 1% level of significance in 
testing a hypothesis, then there is only 1 case in 100 that we would reject the 
hypothesis when it should be accepted. 

Suppose, that under a given hypothesis the sampling distribution of a 

statistic  is approximately a normal distribution with mean E(  ) and standard 

deviation (Standard Error)  . 

                          

Then z = 
ofError  Standard

 valueExpected-   valueObserved is called the standardized 

normal variable or z-score, and its distribution is the standardized normal 

distribution with mean 0 and standard deviation 1, the graph of which is shown 

below. 



 111

                         

From the above figure, we see that if the test statistic z of a sample 

statistic   lies between —1.96 and 1.96, then we are 95% confident that the 

hypothesis is true. 

 But if for a simple random sample we find that the test statistic (or z-
score) z lies outside the range —1.96 to 1.96, i.e. if z > 1.96, we would say that 
such an event could happen with probability of only 0.05 (total shaded area in 
the above figure if the given hypothesis were true). In this case, we say that z-
score differed significantly from the value expected under the hypothesis and 
hence, the hypothesis is to be rejected at 5% (or 0.05) level of significance. Here 
the total shaded area 0.05 in the above figure represents the probability of being 
wrong in rejecting the hypothesis. Thus if z > 1.96, we say that the hypothesis is 
rejected at a 5% level of significance. 

Remark: - The set of z scores outside the range —1.96 and 1.96, 

constitutes the critical region or region of rejection of the hypothesis or the 

region of significance. Thus critical region is the area under the sampling 

distribution in which the test statistic value has to fall for the null hypothesis to 

be rejected.  

Thus choosing a certain level of probability with which we would be 

willing to risk error of type-I, is called level of significance.  

POWER OF A TEST :-The power of a test is defined as the probability 

of rejecting the null hypothesis when it is actually false, i.e., when H1 is true. It 

is ability of a statistical test to detect the alternative hypothesis when it is true . 

Power= ]/[1]/[ 1010 HHacceptPHHrejetP   
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 errorIItypeofob  .Pr1 = 1  

where  is the probability of type II error.  

Among a class of tests, the best test is the one which has the maximum 

power for the same size i.e., same level of significance . 

 

8.8 DEGREES OF FREEDOM 

In a test of hypothesis, a sample is drawn from the population of which 

the parameter is under test. The size of the sample varies since it depends either 

on the experimenter or on the resources available; moreover, the test statistic 

involves the estimated value of the parameter which depends on the number of 

observations. Hence, the sample size plays an important role in testing of 

hypothesis and is taken care of by degrees of freedom. 

Summing up we can say that the number of values in a sample we can 

specify freely, once we know something about that sample is known as degrees 

of freedom 

Definition: Degree Of Freedom is the number of independent 

observations in a set.  

 

8.9 P-VALUES 

 It may be defined as the smallest level of  at which 0H is rejected. In 

this situation , it is not inferred whether 0H is accepted or rejected at level 0.05, 
0.01 or any other value, but the statistician only give the smallest level of  at 
which 0H is rejected. 
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This facilitates the individual to decide for himself as to how much 
significant the data are. This approach avoids the imposition of fixed level of 
significance. 

1. For the right tailed test, the P—value is the area to the right of the 

computed value of the test statistic under H0  

                         

2. For the left tailed test, the P-value is the area to the left of the 
computed value of the test statistic under Ho 

                           

3. For the two-tailed test, P-value is 

(a) Twice the area to the left of the computed value of test statistic 
under H0, if it is negative  or, 

(b) Twice the area to the right of the computed value of test statistic 
under Ho, if it is Positive 

The P-value for two-tailed test is twice the area on either tail (left or 
right) of the computed value of test statistic under Ho 
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8.10 SELF ASSESSMENT QUESTIONS 

Question No:-1 What is a critical region and on what basis, are we able 

to know about the position of critical region(s)? 

Question No:-2 Why are the degrees of freedom so important in taking a 

decision about the rejection or acceptance of a hypothesis? 

Question No:3 Define the following terms: 

(a) one tailed and two tailed test. 

(b) Test of significance. 

(c) Degrees of freedom. 

(d) Level of significance. 

(e) Composite hypothesis. 

Question No:4 Write short notes on: 

(a) Randomized test. 
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(b) One-tailed test. 

(c) Critical region. 

(d) Statistic. 

(e) P-value concept. 

Question No:4 What is a critical region and on what basis, are we able to 

know about the position of critical region(s)? 
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Unit 3 Lesson 9 

TESTING OF HYPOTHESES 

Structure: 

9.1 Introduction 

9.2 Objectives  

9.3 Types of Error 

9.4 Procedure for testing the hypothesis 

9.5 Illustration 

9.6 Sampling from attributes 

9.7 Self Assessment Questions 

 

9.1    INTRODUCTION 

We observed that there are essentially two kinds of statistical inferences, 

estimation and hypothesis testing. Both are concerned with learning something 

about an unknown aspect of a population on the basis of sample information. We 

have so far discussed the problems relating to estimation; presently our concern 

shall be the problem of testing hypotheses. A hypothesis is a theoretical 

proposition that is capable of empirical verification or disproof. It may be 

viewed as an explanation of some event or events, and which may be true or 

false explanation. Three forms of hypotheses are generally described in 

statistics; maintained, simple and composite. Those assumptions that are not 

exposed to any test are called the maintained hypotheses; while the remaining 

are called testable hypotheses. The A hypothesis is a theoretical proposition that 

is capable of empirical verification or disproof. It may be viewed as an 

explanation of some event or events, and which may be true or false explanation. 
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Three forms of hypotheses are generally described in statistics; maintained, 

simple and composite. Those assumptions that are not exposed to any test are 

called the maintained hypotheses; while the remaining are called testable 

hypothesis.  

The procedure, by which we are able to reject our null hypothesis, is 

called criterion of test. In other words criterion of test refers to setting up of the 

boundary between critical and acceptance regions which is determined by many 

considerations; such as, the prior information concerning the distribution of the 

test-statistic, by the specification of the alternative hypothesis and so on. 

The test criterion, however, may not always give us correct conclusions. 

In making any decision we are liable to commit one of the two types of error in 

this lesson 

 

9.2 OBJECTIVES  

Objectives of this lesson is to enable the learners 

1. To learn how to use samples to decide whether a population 
possesses a particular characteristic 

2. To determine how unlikely it is that an observed sample could 
have come from a hypothesized population and further, how to 
check the validity of our assertion about the population 

3. To understand the two types of errors possible when testing 
hypotheses 

4. To learn when to use one- tailed tests and when to use two-tailed 
tests 

5. To learn the five-step process for testing hypotheses 

6. To understand how and when to use the normal distribution for 
testing hypotheses about population means and proportions 
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9.3 TYPES OF ERROR 

We make decision about the 0H  (Null hypothesis) on the basis of the 

information supplied by the observed sample observations. The conclusion 

drawn on the basis of a particular sample observation may not always be true in 

the in respect of the population. There are four possible situations which may 

arise if a statistical hypothesis is tested. 

 

 

True State Decision from the sample 

 

 

0H true 

            

0H false 

 

Reject 0H                                Accept 0H  

Incorrect decision                  Correct decision 

(Type-I Error) 

 

Correct decision                    Incorrect decision 

                                                (Type-II Error)   

 

If a statistical hypothesis is tested, as shown in the above table, we may 

get the following four possible cases: 

a. The null hypothesis is true and it is accepted; 

b. The null hypothesis is false and it is rejected; 

c. The null hypothesis is true, but it is rejected; 

d. The null hypothesis is false, but it is accepted. 
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Clearly, the last two cases lead to errors which are called errors of 

sampling. The error made in (c) is called Type I Error. The error committed in 

(d) is called Type II Error. In either case a wrong decision is taken. 

Thus we can say that, Error of rejecting 0H when it is true is called as the 

type-I error and the error of accepting 0H  when it is false is called as type-II 

error. The probabilities of type-I and Type-II errors are denoted respectively by 

 and  .Thus 

= Possibility of type-I error= Probability of rejecting 0H when 0H  is 

true. 

 =Possibility of type-II error= Probability of accepting 0H when 0H  is 

false. 

Symbolically 

 ]/[ 0HxP ,  where nxxxx ,....., 21  




 dxL 0    

where 0L is the likelihood function of sample observations under 0H and 

dx represents n-fold integral ndxdxdx ......... 21 .If we find x  we reject 

0H and if we find x  we accept 0H . Where  and are two disjoint and 

exhaustive subsets of the set S (The set of all possible outcomes of the variable 

x). 

Again 

 ]/[ 0HxP  or 


dxL1       

where 1L is the likelihood function observations under 1H  
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Since we have 




 111 dxLdxL        


11 11 dxLdxL     

or  1]/[ 1HxP  ……………………………… )(  

Note:  

1. , the probability of the type –I error is known as the level of 

significance. It is also called as the size of the test. 

2. 1  as  defined in )(  is called as the power function of the test for 

testing 0H against the alternative 1H . The value of the power function at a 

particular point is called as the power of the test at that point. 

3. An ideal test would be one which properly keeps under control both 

the type of errors, unfortunately for fixed sample size n,   and    are so related 

(like producers and consumers in sampling inspection plan) that the reduction in 

one results in an increase in the other. Consequently simultaneous minimizing of 

both the errors is not possible. Since error of type-I seems to be more serious. 

The usual practice is to control   at predetermined low level and subject to this 

restriction, choose a test which minimizes   or maximize the power function 

1 , generally we choose =0.05 or .01. 

The general idea behind the two types of errors. can also be illustrated by 

an example of testing null hypothesis against simple alternative hypothesis.. 

Assume that we obtain a sample of n-observations. We are to examine whether 

this sample belongs to a normal population A with mean X or population B with 

mean = Y (We are not considering the variances of the populations sample for 

the time being.) 

So we have: XH :0  
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          H1: Y  

The level of significance may be chosen a priori as, say, 5 per cent. Since 

the alternative hypothesis is Y  that and assuming that  YX  only high 

values of observed sample mean X (which is test-statistic in the present case) 

relative to X would constitute evidence against H0. 

The two distributions A and B are compared diagrammatically in below 

given figure where in we show the probabilities of two types of error involved in 

hypothesis testing. 

                     

Error type I is committed whenever X falls to the right of the boundary 

point X0 (assuming that H0 is true) and its probability is given by the chosen 

level of significance (i.e., 5 per cent) and corresponds to the blackened area. The 

error type II occurs whenever we do not reject H0 when it is in fact false. This 

happens whenever X falls to the left of X0 (assuming that H0 is not true). The 

probability of making this error is given by the striped area in above figure. As 

could be seen, the decrease in the probability of one type of error can be brought 

about only at the cost of increase in the probability of another type of error. We 

can decrease the probability of error type I by shifting the boundary point X0 

farther to the right. But by doing so we would obviously increase the striped area 

which represents the probabilities of error type II. Then, the question arises, how 

to decrease the probabilities of both types of error simultaneously? The only way 
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in which we can reduce the probabilities of both kinds of error at the same time 

is by increasing the size of sample. 

 

9.4 PROCEDURE FOR TESTING THE HYPOTHESIS 

The first step in hypothesis testing is that of formulation of the null 
hypothesis and its alternative. The next step consists of devising a criterion of 
test that would enable us to decide whether the null hypothesis is to be rejected 
or not. For this purpose the whole set of values of the population is divided into 
two regions: 

The acceptance region and rejection regions. The acceptance region 
includes the values of the population which have a high probability of being 
observed, and the rejection region or critical region includes those values which 
are highly unlikely to be observed. The test is then performed with reference to 
test-statistic. The empirical tests that are used for testing the hypothesis are 
called tests of significance. If the value of the test-statistic falls in the critical 
region, the null hypothesis is rejected; while if the value of test-statistic falls in 
the acceptance region, the null hypothesis is not rejected. 

The various steps involved in testing of a statistical hypothesis are as 

under. 

1. Null Hypothesis: we set up the Null Hypothesis Ho. 

2. Alternative Hypothesis. Next we set up the alternative hypothesis H1. 

This will enable us to decide whether we have to use a single-tailed (right or 

left) test or two-tailed test. 

3. Level of Significance. Appropriate level of significance   is chosen 

depending on the reliability of the estimates and permissible risk. This is to be 

decided before sample is drawn,  

4. Test Statistic: we compute the test statistic: 
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)(.
)(

tES
tEtZ 

  under H0                                                   

     
5. Conclusion. We compare the computed value of Z in step 4 with the 

significant value (tabulated value) Z  at the given level of significance, ‘ ’. 

If  ZZ  i.e., if the calculated value of Z (in modulus value) is less than 

Z , we say it is not significant. By this we mean that the difference t- E(t) is just 

due to fluctuations of sampling and the sample data do not provide us sufficient 

evidence against the null hypothesis which may, therefore, be accepted. 

If  ZZ i.e., if the computed value of test statistic is greater than the 

critical or significant value, then we say that it is significant and the null 

hypothesis is rejected at level of significance  , i.e., with confidence coefficient 

(1- ) 

Let us examine each step separately in a detailed manner as described 

below. 

Step 1: The object of statistical inference is to derive conclusions about 

the population parameter, from the sample statistics. Certain rules are to be 

followed to measure the Level of uncertainty and decide whether to accept or 

reject our conclusions. To do this, the best way is to compare the sample 

estimate with the true value of the population parameter. When true value of 

population parameter is unknown, some assumption about the value of the true 

population parameter is made. This is then formulation of null hypothesis.  

There could be a very large number of hypothetical values which may be 

compatible with our sample estimate. To avoid such problem, it has become 

customary to make the hypothesis that the true population parameter is equal to 

zero. 
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Step 2: In making any decision, one is liable to commit one of the 

following types of errors: 

Error type I: Rejects the null hypothesis, when it is actually true. 

Error type II: Accepts the null hypothesis, when it is actually wrong. 

One would like to minimise type I and type H errors. But unfortunately, 
for any given sample size, it is not possible to minimise both the errors 
simultaneously. The classical approach to this problem is to assume that a type I 
error is likely to be more serious in practice than a type-II error. Therefore, one 
should try to keep the probability of committing a type I error at a fairly low 
level, such as 0.01 or 0.05, and then try to minimise the type 11 error as much as 
possible. The probability of type I error is called the level of significance. 
Choosing a certain level of significance would mean specifying the probability 
of committing a type I error. 

Step 3: The critical region includes only those values that correspond to 

the level of significance. But the critical region may be chosen at 

(i)   the right end 

(ii)  the left end 

(iii)  half at each end of the distribution of the variable. 

In the first and second cases, it involves one-tail test and in the third case 

it involves a two-tail test. The decision on, which of the two to choose’ would 

depend on the form in which the alternative hypothesis is expressed. 

(1)  01 : H 00,..  orei  (Two tailed alternative) 

(2) 01 : H           right tail (one tailed alternative) 

 (3)  01 : H             left tail (one tailed alternative) 
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The location of the critical region would depend on the direction at which 

the inequality sign points One has to choose the right tail as the critical region if 

the inequality sign is greater than; the left hand tail as the critical region if the 

inequality sign is less than, and a two-tail critical region when the inequality 

sign is not equal to. 

Step 4: The choice among the various tests of significance depends on 

two things 

(a) Size of sample, and (b) information on population variance 

(i) If the variance of parent population is known, Z-test is appropriate 

(irrespective of the normality of the population and the sample 

size). 

(ii) If the variance of the parent population is not known but the size of 

sample is large (it is greater than 30 observations), Z-test is still 

appropriate because the estimate of the population variance from a 

large sample is a satisfactory estimate of the true population 

variance. 

(iii) If the variance is not known and also the size of sample is small 

(less than 30 observations), t-test is appropriate provided that the 

parent population is normal. And so on 

Step 5: Once the decision has been taken about the particular test of 

significance, the test-statistic has to be computed from the observed sample 

observations to conduct the required test. 

Step 6: The final step of the hypothesis testing is to compare the 

computed value of the test-statistic with that of tabulated theoretical value of this 

statistic. 
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9.5 ILLUSTRATION 

Suppose that we are given the following information 

 n = 36,  s = 6 , X  = 499, = 10%. And let us suppose that we have to 

test the hypothesis that population mean is equal to 500 against the alternative 

that it is less than 500 i.e   

1. 500:0 H and 500:1 H  

This is a left-tail test with a =10%.  

2. 16/6 



nx    X ~N(500,1) 

3. Critical region is z <-1.28  

The z-score = 499 — 500 = —l 

Since —1 <—1.28, H0 is accepted. 

What is the probability that we are wrong? 

 = P(The Null Hypothesis is false but sample statistic falls in the 

acceptance region) 

The acceptance region for the standard normal curve is Z —1.28. 

Therefore, the acceptance region for the distribution of X  is 

Z = 
x
500-X    —1.28 

72.498128.150050028.1  XX  

Therefore, 

)50072.498(  XP  
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We cannot compute the probability unless   is known. Suppose 

=499.5 

Then )5.49972.498(  XP  

   )1,5.499]/)72.498(/)[(  XXXXP  

              ]1/)5.49972.498([  ZP  

    ]78.0[  ZP =0.5+0.2823=0.7823 

)1(  indicates how powerful the test is. A high )1(   (that is, close to 

1) implies that the test is doing exactly what it should be doing: Rejecting H0 

when it is false. And a low )1(   indicates poor performance. 

 

9.6 SAMPLING FROM ATTRIBUTES 

Let us consider a sample from a population which is divided into two 

mutually exclusive and collectively exhaustive classes-one class possessing a 

particular attribute A (say), and the other class not possessing that attribute, The 

presence of an attribute in sampled unit may be termed as success and its 

absence as failure. In this case a sample of n observations is identified with that 

of a series of n independent Bernoulli trials with constant probability P of 

success for each trial. Then the probability of x successes in n trials, as given by 

the binomial probability distribution is: p(x) = xnx
n

x
qpc  ; x = 0, 1, 2... ….n. 

as well. The only difference is that now, since we’re dealing with a 

proportion, the binomial distribution is the correct sampling distribution to use. 

We know that as long as n is large enough to make both np and nq at least 5, we 
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can use the normal distribution to approximate the binomial. If that is the case, 

we proceed exactly as we did with interval estimates of the mean.  

 

9.7 SELF ASSESSMENT QUESTIONS 

Question No:-1 Throw light on the need of the testing of hypothesis. 

Question No:-2 Discuss a hypothesis, What types of hypotheses do you 

know? Discuss each of them. 

Question No:-3  Discuss two types of errors in the testing of hypotheses. 

What is their role in testing? 

Question No:-4  What do you understand by a large sample test?  

Question No:-5 Why are the degrees of freedom so important in taking a 

decision about the rejection or acceptance of a hypothesis? 

Question No:- 6. Define the following terms: 

(a) Type II error. 

(b) Power of a test. 

(c) Degrees of freedom. 

(d) Level of significance. 

(e) Composite hypothesis.   

Question No:-7 what is the role of an alternative hypothesis in 

hypotheses testing?   

Question No:-8. Explain the basic principle of interval estimation as 

invented by J.Neyman. 

Question No:-9 Write ‘Yes’ if the statements given below are correct, 

otherwise write ‘No’ 
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(a) Degrees of freedom take care of the sample size in a decision problem 

about a hypothesis. 

(b) Randomized test also involves some statistic. 

(c) Each statistic has some distribution. 

(d) Critical region is always on one tail only. 

(e) Standard deviation of an estimate and standard error are the same. 

(I)  Interval estimate is better than point estimate. 

Question No:-10 Write whether the following statements are correct: 

(a)  Z-value lies between 0 and   . 

(c) Variance of a sample can be any value between —  and  . 

(d) When = 0, we have to accept H0. 

(e) When =1, we have to reject H0. 
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Unit 3 Lesson 10 

TESTS OF SIGNIFICANCE OF DIFFERENCE OF PROPORTION 

Structure: 

10.1 Introduction 

10.2 Objectives  

10.3 Test of significance for single proportion 

10.4 Examples based test of significance for single proportion 

10.5 Test of significance of difference of proportions 

10.6 Examples based test of significance for difference of proportion 

10.7 Self Assessment Questions 

 

10.1 INTRODUCTION 

Let us consider a sample from a population which is divided into two 
mutually exclusive and collectively exhaustive classes-one class possessing a 
particular attribute A (say), and the other class not possessing that attribute, The 
presence of an attribute in sampled unit may be termed as success and its 
absence as failure. In this case a sample of n observations is identified with that 
of a series of n independent Bernoulli trials with constant probability P of 
success for each trial. Since we are dealing with a proportion, the binomial 
distribution is the correct sampling distribution to use. We know that as long as 
n is large enough to make both np and nq at least 5, we can use the normal 
distribution to approximate the binomial. If that is the case, we proceed exactly 
as we did with interval estimates of the mean. So while dealing with the testing 
the significance of proportions we make use of the binomial distribution further 
we can use the normal distribution to approximate the binomial for large 
samples. 
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10.2 OBJECTIVES  

Objectives of this lesson is to enable the learners 

1. To learn how to use samples to decide whether a population 

possesses a particular characteristic 

2. To determine how unlikely it is that an observed sample could 

have come from a hypothesized population and further, how to 

check the validity of our assertion about the population proportion 

3. To understand the use test of significance when testing the 

significance for single proportion 

4. To  test of significance when testing the significance difference of 

two proportions in case of large population . 

5. In general, to understand how and when to use the normal 

distribution for testing hypotheses about population means and 

proportions 

 

10.3 TEST OF SIGNIFICANCE FOR SINGLE PROPORTION 

 

Let us consider a sample from a population which is divided into two 
mutually exclusive and collectively exhaustive classes-one class possessing a 
particular attribute A (say), and the other class not possessing that attribute, The 
presence of an attribute in sampled unit may be termed as success and its 
absence as failure. In this case a sample of n observations is identified with that 
of a series of n independent Bernoulli trials with constant probability P of 
success for each trial the binomial distribution is the correct sampling 
distribution to use. 
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 Then the probability of x successes in n trials, as given by the binomial 

probability distribution is: p(x) = xnx
n

x
qpc   ; x = 0, 1, 2... ….n. 

Further we can use the normal distribution to approximate the binomial. 
If that is the case, we proceed exactly as we did with interval estimates of the 
mean.  

  

If X is the number of individuals (units) possessing the given attribute in 
n independent trials with constant probability P of success for each trial, then 

p= observed sample proportion= x/n 

  E (X) = nP  and  V (X)= nPQ,  

where Q = 1- P. is the probability of failure. For large samples, the 
binomial distribution tends to normal distribution.  

Hence for large n, X~ N (nP, nPQ), , the standard normal variate 

corresponding to the statistic p is 

 1,0~
)(.
][ N

n
PQ

Pp
pES
pEpZ 




  

If we have a sampling from finite population of size N  S.E of p is given 

by         

                       
n

PQ
N

nN











1
 

Probable limits for observed proportion of success is given by 

             n
PQPpESpE 3)(.3)(    

if P is not known than we take p (sample proportion) as the estimate of P 

and probable limits for observed proportion of success are      
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                  n
pqp 3  

 

Rejection rule for 00 : PPH   

Suppose that we are taking 5% level of significance then for testing 
significance at 5% level, the rules are as follows: 

(i) If the alternative hypothesis is that the population proportion P is 
‘different’ 

from P0,i.e 0PP  reject H0 when the value of z lies outside the range-1 
.96 to 1.96.  

H1: 0PP  ; Critical Region  Z 1.96 

(ii) If the alternative hypothesis is that the population proportion P is 

‘greater’ than P0, reject H0 when the value of Z is greater than 1.645. 

H1:(P> P0); Critical Region Z> 1.645 

(iii) If the alternative hypothesis is that the population proportion P is 

‘less’ than P0, reject H0 when the value of z is less than - 1.645. 

H1:(P< P0); Critical Region Z- 1.645 

Otherwise, do not reject the null hypothesis H0. Similarly for testing at 

1% level and 10% the rejection rule are given below in a tabular manner 

Level of significance  10% 5% 1% 

Critical region for 0PP   Z > 1.64 Z > 1.96 Z >2.58 

Critical region for 0PP   Z<-1.28 z <-1.64 z<-2.33 

critica1 region for 0PP   Z>1.28 Z > 1.64 Z> 2.33 
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 For large samples (n > 30), the sampling distributions of many statistics 
are approximately normal distribution. In such cases, we can use the results of 
the table given above to formulate decision rules. 

 

10.4 Examples based test of significance for single proportion 

Example::In order to check that what proportion of the employees prefer 

to provide their own retirement benefits in lieu of a company-sponsored plan. a 

simple random sample of 75 employee was taken and we find that 0.4 of them 

are interested in providing their own retirement plans. Management wants to 

find an interval about which they can be 99 percent confident that it contains the 

true population proportion. 

Sol: In usual notations we have 

n = 75   Sample size,  p= 0.4   Sample proportion in favor 

q= 0.6   Sample proportion not in favor 

Now the standard error of sample proportions is estimated by  

nqpp /ˆˆˆ  = 057.00032.0
75

)6.0)(4.0(
  

Estimated standard error of proportion 

A 99 percent confidence level would include 49.5 percent of the area on 

either side of the mean in the sampling distribution. From the table we see that 

0.495 of the area under the normal curve is located between the mean and a 

point 2.58 standard errors from the mean. Thus, 99 percent of the area is 

contained between plus and minus 2.58 standard errors from the mean. Our 

confidence limits then become 
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              057.058.24.0ˆ58.2  pp = 0.547,0.253 

Thus, we estimate from our sample of 75 employees that with 99 percent 

confidence we believe that the proportion of the total population of employees 

who wish to establish their own retirement plans lies between 0.253 and 0.547. 

Example: In a sample of 1,000 people from a particular area, 540 prefer 

diet A and the rest prefer diet B. Can we assume that both rice and wheat are 

equally popular in this State at1% level of significance? 

Solution.  

In the usual notations, we are given : n = 1,000  X = Who prefer diet A = 

540 

 p = Sample proportion of those Who prefer diet A = x/n =540/1000 = 

0.54 

Null Hypothesis, H0: Both diet A and diet B are equally popular in the 

area so that 

P =Population proportion of diet A = 0•5      Q =1- P = 0.5. 

Alternative Hypothesis, H1 : P   0.5 (two-tailed alternative) 

Under H0, the test statistic is     

 1,0~N

n
PQ

PpZ 
    or   

          

532.2
0138.0
04.0

1000
50.050.0

50.054.0





Z

 

Conclusion. The significant or critical value of Z at 1% level of 

significance for two- tailed test is 2.58, Since computed Z = 2.532 is less than 

2.58, it is not significant at 1% level of significance. Hence the null hypothesis 
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is accepted and we may conclude that diet A and diet B are equally popular in 

that area. 

 

Example: : A die is thrown 9,000 times and a throw of 3 or 4 is observed 

3,240 times. Show that the die cannot be regarded as an unbiased one and find 

the limits between which the probability of a throw of 3 or 4 lies. 

Solution. If the coming of 3 or 4 is called a success, then in usual 

notations n 9,000; X = Number of successes = 3,240 

Under the null hypothesis (H0) that the die is an unbiased one, we get 

P = Probability of success = Probability of getting a 3 or 4=1/6+1/6 =1/3 

Alternative hypothesis, H1 : p 3
1 , (i.e., die is biased). 

We have  1,0~N
nPQ

nPXZ 
   

since n is large   

 1,0~36.5
2000
240

)3/2()3/1(9000
)3/1(90003240 NZ 




  

Since Z > 3, H0 is rejected and we conclude that the die is almost 

certainly biased. 

Since die is not unbiased, P 3
1 . The probable limits for ‘P’ are given 

by: 

nqppnQPP /ˆˆ/ˆˆ3ˆ   where 

64.036.011ˆ
36.09000

3240ˆ 


 pQandpP  
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Probable limits for population proportion of successes may be taken as: 

375.0,345.0
1030

8.06.036.0

9000
64.036.036.0/ˆˆ3ˆ







 nQPP

 

Hence the probability of getting 3 or 4 almost certainly lies between 

0.345 and 

0.375. 

 

Example: A random sample of 500 oranges was taken from a large 

consignment and 65 were found to be bad. Show that the S.E. of the proportion 

of bad ones in a sample of this size is 0.015 and deduce that the percentage of 

bad oranges in the consignment almost certainly lies between 8.5 and 17.5. 

Solution. 

  Here we are given: n = 500     X = Number of bad pineapples in the 

sample =65 

 p =Proportion of bad pineapples in the sample =65/500 = 0.13        q =1-

p = 0.87 

Since p, the proportion of bad pineapples in the consignment is not 

known, we may take 

                                         P̂ = p = 0.13, Q̂ = q =0.87.  

015.0500/87.013.0/ˆˆ.  nQPproportionofES   

Thus, the limits for the proportion of bad pineapples in the consignment 

are: 
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)175.0,085.0(045.030.0015.03130.0/ˆˆ3ˆ  nQPP                                                                                                                              

Hence the percentage of bad oranges in the consignment lies almost 

certainly between 85 and 17.5. 

 

Example:Twenty people were attacked by a disease and only 18 

survived. Will you reject the hypothesis that the survival rate, if attacked by this 

disease, is 85% in favour of the hypothesis that it is more, at 5% level. (Use 

Large Sample Test.) 

Solution. In the usual notations, we are given. n = 20, X = Number of 

persons who survived after attack by a disease = 18  p = Proportion of persons 

survived in the sample = 0.90 

Null Hypothesis, H0 : P= 0.85, i.e., the proportion of persons survived 

after attack by a disease in the lot is 85%. 

Alternative Hypothesis, H1 : P> 0.85 (Right-tailed alternative). 

Under H0,  

the test statistic is  1,0~N

n
PQ

PpZ 
     or                 

                                 633.0
079.0
05.0

20
15.085.0
85.090.0





Z  

Conclusion. Since the alternative hypothesis is one-sided (right-tailed), 

we shall apply right-tailed test for testing significance of. Z. The significant 

value of Z at 5% level of significance for right-tailed test is + 1.645. Since 

computed value of Z= 0.633 is less than 1.645, it is not significant and we may 

accept the null hypothesis at 5% level of significance. 
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10.5 TEST OF SIGNIFICANCE OF DIFFERENCE OF PROPORTIONS 

Suppose we have to compare two large populations say A and B with 

respect to the prevalence of a certain attribute among their members. Let x1, x2 

be the number of persons possessing the given attribute in  large random 

samples of sizes n1 and n2 from the two populations respectively.  

Then sample proportions are given by 

 p1= observed proportion of success in a sample from population A= 

X1/n1  

 P2 = observed proportion of success in a sample from population B= 

X2/n2.  

If P1 and P2 are population proportions, then  

E(p1) = P1.  E(p2) = P2  

 

2

22
2

1

11
1 )()(

n
QPpVand

n
QPpV   

  

Since for large samples, p1 and p2 are independently and asymptotically 

normally distributed, (p1 -p2) is also normally distributed. Then the standard 

variable corresponding to the difference (p1-p2) is given by: 

 1,0~
)(

)()(

21

2121 N
ppV

ppEppZ



  

Under the null hypothesis, H0 : P1=P2. i.e., there is no significant 

difference between the sample proportions, we have 
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0)()()( 212121  PPpEpEppE  

          )()()( 2121 pVpVppVAlso   

the covariance term Cov( p1, p2) vanishes, since sample proportions are 

independent. 











212

22

1

11
21

11)(
nn

PQ
n
QP

n
QPppV  

 QQQandsayPPPHunder  21210 ,:       

Hence, under H0 P1 = P2, the test statistic for the difference of 

proportions becomes 

 
 1,0~

/1/1
)(

21

21 N
nnPQ

ppZ



  

In general, common population proportion P under H0 is not known. 

Under H0: P1 =P2 = P (say), an unbiased estimate of the population proportion P  

based on both the samples is 

21

21

21

2211ˆ
nn
XX

nn
pnpnP





  

Thus by using P̂ in above stated test statistic we test for null hypothesis 

 

10.6 EXAMPLES BASED ON TEST OF SIGNIFICANCE OF DIFFERENCE OF 

TWO PROPORTIONS 

 

Example: Random samples of 400 men and 600 women were asked 
whether they would like to have a cinema hall in their locality. 200 men and 325 
women were in favor of the proposal. Test the hypothesis that proportions of 
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men and women in favour of the proposal are same against that they are not, at 
1% level. 

Sol. Null Hypothesis H0:P1 = P2 = P (say), i.e., there is no significant 

difference between the opinions of men and women as far as proposal of flyover 

is concerned. 

Alternative Hypothesis, H1 : P1  P2 (two-tailed). 

We are given: n1 = 400,   X1 = Number of men favoring the proposal = 

200,  n2= 600, X2 = Number of women favoring the proposal = 325 

p1 =Proportion of men favoring the proposal in the sample =
1

1
n

x = 

220/400=0.5                             

p2= Proportion of women favoring the proposal in the sample = 22 nx  

     =325/600 = 0.541 

Since samples are large, the test statistic under the Null Hypothesis,H0 is: 

 
 1,0~

/1/1
)(

21

21 N
nnPQ

ppZ



  

 Under H0: P1 =P2 = P (say), an unbiased estimate of the population 

proportion P  based on both the samples is 

525.0
600400
325200ˆ

21

21

21

2211 









nn
XX

nn
pnpnP  

475.0525.01ˆ1ˆ  PQ  

269.1
0323.0

041.0
0.001039

0.041-



 Z  
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Conclusion. Since Z =1.269 which is less than 2.58, it is not significant 

at 1% level of significance. Hence H0 may be accepted at 5% level of 

significance and we may conclude that men and women do not differ 

significantly as regards proposal of flyover is concerned 

Example: In a large city A, 20 per cent of a random sample of 900 

school children had defective eye-sight. In other large city B, 15 per cent of 

random sample of 1,600 children had the same defect. Is this difference between 

the two proportions significant? Obtain 95% confidence limits for the difference 

in the population pro portions. 

Sol Sol In usual notations we have  

85.015.0 22  qp  and 80.020.0 11  qp  

Under H0: P1 =P2 the test statistic for large samples is 

 
 1,0~21.3

/1/1
)(

21

21 N
nnPQ

ppZ 



  

 Where under H0: P1 =P2 = P (say), an unbiased estimate of the 

population proportion P  based on both the samples is 

PQ
nn

pnpnP ˆ1ˆˆ
21

2211 

  

Conclusion. Since the calculated value of Z is greater than 1.96, it is 

significant at 5% level. We, therefore, reject the null hypothesis H0 and conclude 

that the difference between the two proportions is significant. 

The 95% confidence limits for the difference P1 -P2 are 

)(.96.1)( 2121 ppofESpp  :         
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Where  
2

22

1

11

2

22

1

11
21 )(.

n
qp

n
qp

n
QP

n
QPppofES   

016.0
1600

85.015.0
900

80.020.0






  

 Hence 95% confidence limits for the difference P1 -P2 are  

 081.0,019.0031.005.0)016.0(96.1)15.020.0(   

Where 0.019 is the upper confidence limit and 0.018 is the lower 

confidence limit. 

Example: A company has the head office at Delhi and a branch at 

Mumbai.The H.R director wanted to know if the workers at the two places 

would like the introduction of a new scheme  of work and a survey was 

conducted for this purpose. Out of a sample of 500 workers at Delhi, 62% 

favoured the new plan. At Mumbai out of a sample of 400. 42% were against the 

new plan. Is there any significant difference between  their attitude towards the 

new plan at 1% level? 

SOL: Under H0: there is no significant difference between their attitude 

towards the new plan the, test statistic for large samples is: 

 
 

 1,0~
/1/1ˆˆ

)(
)(.

)(

21

21

21

21 N
nnQP

pp
ppES

ppZ










393.0607.01ˆ1ˆ607.0
400500

59.040062.0500ˆ
21

2211 




 PQ

nn
pnpnP

 

 1,0~917.0
00107.0
03.0

400
1

500
1393.0*607.0

59.062.0 NZ 







 

  
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Conclusion. Since the calculated value of Z is 0.917 which is less than 

2.58, it is insignificant at 1% level. We, therefore, accept the null hypothesis H0 

and conclude that the there is no significant difference between the attitude of 

employees posted at Delhi and Mumbai as for as the introduction of new scheme 

is concerned. 

 

10.7 SELF ASSESSMENT QUESTIONS 

Question No:-1 Describe briefly the test of significance of difference of 

single proportion. 

Question No:-2 Write down the steps involved in testing the significance 

of difference of two proportions  

Question No:-3 Obtain 95% confidence limits in following cases 

(a) For single proportion.(b) For two proportions  

Question No:-4 when a sample of 70 retail executives was surveyed 

regarding the poor performance of the retail industry 66 percent believed that 

decreased sales were due to unseasonably warm temperatures, resulting in 

consumers’ delaying purchase of cold-weather items. 

(a) Estimate the standard error of the proportion of retail executives 

who blame warm weather for low sales. 

(b) Find the upper and lower confidence limits for this proportion, 

given a 95 percent confidence level. 

Question No:-5 A noted social psychologist, surveyed 150 top executives 

and found that 42 percent of them were unable to add fractions correctly. 

(a) Estimate the standard error of the proportion. 
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(b) Construct a 99 percent confidence interval for the true proportion 

of top executives who cannot correctly add fractions. 

Question No:-6  In a random sample of 200 men taken from area A, 90 

were found to be consuming alcohol. In another sample of 300 men taken from 

area B, 100 were found to be consuming alcohol. Do the two areas differ 

significantly in respect of the proportion of men who consume alcohol? 

Question No:-7  In a random sample of 500 men from a particular district 

of Maharashtra., 500 are found to be smokers. In one of 5,000 men from another 

district, 650 are smokers. Do the data indicate that the two districts are 

significantly different with respect to the prevalence of smoking among men? 

Question No:-8 A factory is producing 40,000 pairs of shoes daily. From 

a sample of 400 pairs, 3% were found to be of sub-standard quality. Estimate the 

number of pairs that can be reasonably expected to be spoiled in the daily 

production and assign limits at 99% level of confidence.  

Question No:-9 A manufacturer claimed that at least 98% of the steel 

pipes which he supplied to a factory conformed to specifications. An 

examination of a sample of 500 pieces of pipes revealed that 30 were defective. 

Test this claim at a significance level of (1) 0.05, (ii) 0•01. 

Question No:-10 A random sample of size 1100 selected from a large 

bulk of mass produced machine parts contains 7% defectives. What information 

can be inferred about the percentage of defective in the bulk?  
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Unit 3 Lesson 11 

TESTS OF SIGNIFICANCE FOR MEANS 

Structure: 

11.1 Introduction 

11.2 Objectives  

11.3 Test of significance for single mean 

11.4 Examples based test of significance for single mean 

11.5 Test of significance of difference of two means 

11.6 Examples based test of significance for difference of two means 

11.7 Self Assessment Questions 

 

11.1 INTRODUCTION 

For large samples (n > 30), the sampling distributions of many statistics 

are approximately normal distribution. The test of hypothesis about a population 

mean or two population means, by the t-test, is applicable under the 

circumstances that population variance(s) is/are not known and the sample(s) 

is/are of small size. In cases where the population variance(s) is/are known, we 

use Z-test (normal test). Moreover, when the sample size is large, sample 

variance approaches population variance and is deemed to be almost equal to 

population variance. In this way, the population variance is known even if we 

have sample data and hence the normal test is applicable. The distribution of Z is 

always normal with a mean zero and a variance 1. The value of Z can be read 

from the table for the area under the normal curve, 
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11.2 OBJECTIVES 

Objectives of this lesson is to enable the learners 

1. To learn how to use samples to decide whether a population 

possesses a particular characteristic. 

2. To determine how unlikely it is that an observed sample could 

have come from a hypothesized population and further, how to 

check the validity of our assertion about the population mean 

3. To understand the use test of significance when testing the 

significance for single proportion 

4. To learn how to use the test of significance of the significance 

difference of two means in case of large population . 

5. In general, to understand how and when to use the normal 

distribution for testing hypotheses about population means 

 

11.3 TEST OF SIGNIFICANCE FOR SINGLE MEAN 

TEST OF SIGNIFICANCE FOR SINGLE MEAN. We know that  if xi (i= 1, 

2, ..., n) is a random sample of size n from a normal population with mean  and 

variance 2 , then the sample mean is distributed normally with mean   and 

variance
n

2
  i.e.,  








 


n
Nx

2
,~ . 
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However, this result holds, i.e., 






 


n
Nx

2
,~ , even in random sampling 

from non-normal population provided the sample size n is large [ Central Limit 

Theorem]. Thus for large samples, the standard normal variate corresponding x

to is: 

n
xZ
/


      …………………(1) 

Under the null hypothesis H0, that the sample has been drawn from a 

population with mean  . and variance 2 , i.e., there is no significant difference 

between the sample mean ( x ) and population mean (  ), the test statistic (for 

large samples), is: 

 1,0~ N

n

xZ



     …………………….(2) 

If the population s.d.   is unknown then we use its estimate provided by 

the 

sample variance given by 22ˆ s  or s̂  (for large samples).Then 

from(2) 

 1,0~ N
n

s
xZ 

  

Confidence limits for : 95% confidence interval for   is given by: 

      ,96.1
/

.,.,96.1 



n

xeiZ  

        )/(96.1)/(96.1 nxnx   
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   and 
n

x  96.1  are known as 95% confidence limits for  . 

Similarly, 99% confidence limits for  . are  

)/(58.2)/(58.2 nxnx   

If the population s.d.   is unknown then we use its estimate provided by 

the sample variance given by 22ˆ s  or s̂  (for large samples). 

 However, in sampling from a finite population of size N, the 

corresponding 95% and 99% confidence limits for   are respectively 

              
1

96.1



N
nN

n
x   and 

1
58.2




N
nN

n
x  

 

For testing at 1% level and 10% the rejection rule are given below in a 

tabular manner 

 

Level of 

significance  

10% 5% 

 

1% 

 

Critical region for 

0  

Z > 1.64 

 

Z > 1.96 

 

Z >2.58 

 

Critical region for 

0  

Z<-1.28 

 

z <-1.64 

 

z<-2.33 

critica1 region for 

0  

Z>1.28 Z > 1.64 

 

Z> 2.33 
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11.4 EXAMPLES BASED TEST OF SIGNIFICANCE FOR SINGLE MEAN 

Example :A cinema hall has a cool drinks fountain supplying Orange and  

Colas. When the machine is turned on, it fills a 550 ml cup with 500 ml of the 

required drink. 

The manager has two problems on hand. 

i. The clients have been complaining that the machine supplies less 

than 500 ml. 

ii. The two colas are supplied by two different manufacturers, each 

pressurizing him to drop the other supplier. Should he drop one? 

On a particular day, he took a survey of 36 clients and x comes out to 
be499 ml, specifications of the machine gave a s.d of 1 ml, Suppose that 
manager wants to minimize the customer complaints, Here we can set the 
hypothesis in three ways 

Case-1 

500:500:0  lHH  and the test statistic under Ho is 

n
xZ
/


 ~N(0,1) where 17.0
6
1 

n
  so that 

6
17.0

500499



Z  This is a left-tailed test with level of significance 

10%. 
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Critical Region: Z <-1.28 Since -6 <-1.28, we reject H0.The machine was 

not set up properly. 

Case-2 Suppose the manager ignores customer’s complaints and instead 

wants to control the volume. That is, on an average, he does not want an excess 

outflow. We may set up the test as follows. 500:500:0  lHH  and 

the test statistic is 

n
xZ
/


 ~N(0,1) where 17.0
6
1 

n
  so that 

 

 6
17.0

500499



Z

 
This is a right-tailed test with =10%. 

 

Critical Region : z > +1.28, Since, this being a right tailed test the 

acceptance region is given by Z < 1.28 and therefore we accept H0. 

Case 3: Suppose, we combine Case 1 and Case 2. That is the manager 

intends to minimize customer complaints and does not want excess outflow. We 

may set up the test as follows: 

500:500:0  lHH  

The test statistic is 

n
xZ
/


 ~N(0,1)  where     17.0
6
1 

n
  so that 



 152

 

 6
17.0

500499



Z  This is a two-tailed test with =10%. 

                                 

Critical Region: Z >1.64, that is Z<-1.64 and Z > 1.64. Since -6 lies in 

one of the rejection regions, we reject H0. 

Example: A sample of 900 members has a mean 3.4 cms. and s.d. 2.61 
cms. Is the sample from a large population of mean 3.25 cms. and s.d. 2.61 cms. 
?If the population is normal and its mean is unknown, find the 95% and 98% 
fiducial limits of true mean.  

Solution. Null Hypothesis, (H0): The sample has been drawn from the 

population with mean  = 3.25 cms. and S.D. =  =2.6l cms. 

Alternative Hypothesis, H1:  3.25 (Two-tailed). 

Test Statistic. Under H0, the test statistic is:  1,0~ N

n

xZ



  (Since n is 

large.) 

Here, we are given: x = 3.4 cms., n = 900   = 3.25 cms. and  = 2.61 

cms. 

 73.1
61.2

3015.0

900
61.2

25.345.3






Z  
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Since Z < 1•96, we conclude that the data don’t provide us any evidence 

against the null hypothesis (H0) which may, therefore, be accepted at 5% level of 

significance. 

 

95% fiducial limits for the population mean  are: 

1705.040.3
900
61.296.140.396.1 















n
x 

 

i,e., 3.5705  and  3.2295 

     

Example: A sample of size 400 was drawn and mean was found to be 

99. Test whether this sample could have came from a normal population with 

mean100 and standard deviation 8 at 5% level of significance 

Sol: Here, we are given: x = 99, n = 400   = 100 and  = 8 

Null Hypothesis, (H0): The sample has been drawn from the normal 

population with mean  = 100 and S.D. = =8  

Alternative Hypothesis, H1:  100 (Two-tailed). 

Test Statistic. Under H0, the test statistic is:  1,0~ N

n

xZ



  

(Since n is large.) 

 5.2
2
5

400
8

10099



Z      5.2 Z  
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Since Z > 1•96, i.e the calculated value of Z is greater that its critical 

value ( 96.1Z ) we reject the null hypothesis   and conclude the sample has not 

been drawn from the normal population with mean  100 and S.D. = 8. 

 

11.5 TEST OF SIGNIFICANCE FOR DIFFERENCE OF MEANS 

Let us consider two independent large samples of sizes n1 and  n2  from 

two populations with means 1  and 2  and variances 2
1  and 2

2  respectively. Let 

1x  and 2x  be the corresponding sample means Then, since sample sizes are 

large,  

)/,(~)/,(~ 2
2
2221

2
111 nNxandnNx   

Also 1x - 2x , being the difference of two independent normal variates is 

also a normal variate with mean 1 - 2  and variance 
2

2
2

1

2
1

nn


 The value of Z 

(S.N.V.) corresponding to( 1x - 2x ) is given by:   

 1,0~)()(
)(.

)()(

2

2
2

1

2
1

2121

21

2211 N

nn

xx
xxES

xxExxZ











  

Under the null hypothesis, H0: 1 = 2  i.e., there is no significant 

difference between the sample means, 

Thus under H0: 1 = 2 , the test statistic becomes (for large samples), 

 1,0~)(

2

2
2

1

2
1

21 N

nn

xxZ






  
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 If 2
1 = 2

2 = 2 , i.e., if the samples have been drawn from the 

populations with common S.D. a, then under H0: 1 = 2  

 1,0~
11
)(

21

21 N

nn

xxZ


  

Remark: 1.If  is not known, then its estimate based on the sample 

variances is used. For large samples, the following estimate of 2 is used 

21

2
22

2
112ˆ

nn
snsn




  

2. If 2
1  2

2 and  1 and 2  are not known, then they are estimated from 

sample values, for large samples we use   

            2
2

2
2

2
2

2
1

2
1 ˆˆ sSandsS   

 1,0~)(

2

2
2

1

2
1

11 N

n
s

n
s

xxZ




  

 

11.6 EXAMPLES BASED TEST OF SIGNIFICANCE FOR DIFFERENCE OF TWO 

MEANS 

 

Example: The means of two single large samples of 1,000 and 2,000 

members are 67.5 inches and 68.0 inches respectively. Can the samples be 

regarded as drawn from the same population of standard deviation 2.5 inches? 

(Test at 5% level of significance.) 
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Sol. In usual notations, we are given: n1=1,000, n2 = 2,000, 1x = 67.5 

inches, 2x = 68.0 inches. 

Null hypothesis, H0 1 = 2  and  = 25 inches, i.e., the samples have been 

drawn from the same population of standard deviation 2.5 inches. 

Alternative hypothesis 01 :  H  

Under H0 the test statistic is   

  1,0~
11
)(

21

11 N

nn

xxZ






      0r 1.5

2000
1

1000
15.2

0.685.67





Z  

Conclusion. Since Z >3,, the value is highly significant and we reject 

the null hypothesis and conclude that samples are certainly not from the same 

population with standard deviation 2.5. 

EXAMPLE : in a survey of buying habits, 400 women shoppers are 

chosen at random in super market ‘A’ located in a certain section of the city. 

Their average weekly food expenditure is Rs. 250 with a standard deviation of 

Rs. 40. For 400 women shoppers chosen at random in super market ‘B’ in 

another section of the city, the average weekly food expenditure is Rs. 220 with 

a standard deviation of Rs. 55. Test at 1% level of significance whether the 

average weekly food expenditure of the two populations of shoppers are equal. 

Solution, in the usual notations, we are given that 

40250400 111  sxn
55220400 222  sxn  

Null hypothesis, H0 1 = 2  i.e., the average weekly food expenditures of 

the two populations of shoppers are equal. 

Alternative hypothesis 01 :  H  (Two-tailed) 
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Test Statistic. Since samples are large, under H0, the test statistic is: 

 1,0~)(

2

2
2

1

2
1

21 N

nn

xxZ






  

Since 2
1 and 2

2 , the population standard deviations are not known, we 

can take for large samples 2
1 = s1

2 and 2
2  = s2

2 and then Z is given by: 

                1,0~82.8

400
)55(

400
)40(

220250)(
22

2

2
2

1

2
1

21 N

n
s

n
s

xxZ 









        

Conclusion. Since Z is much greater than 2.58, the null hypothesis ( 1 =

2 ) is rejected at 1% level of significance and we conclude that the average 

weekly expenditures of two populations of shoppers in markets A and B differ 

significantly. 

 

11.7 SELF ASSESSMENT QUESTIONS 

Question No:-1 Under what circumstances can the normal distribution be 

used to find confidence limits of the populations mean? 

Question No:-2 On the basis of a random sample from a normal 

population with a known variance 2, obtain 99% confidence limits for the 

population mean u. What will be the confidence limits, if the variance is 

unknown? 

Question No:-3  The manufacturer of television tubes knows from past 

experience that the average life of a tube is 2,000 hours with a standard 

deviation of 200 hours. A sample of 100 tubes has an average life of 1,950 
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hours. Test at the 0.05 level of significance if this sample came from a normal 

population of mean 2,000 hours. 

State your null and alternative hypotheses and indicate clearly whether a 
one-tail or a two- tail test is used and why? Is the result of the test significant? 

Question No:-4 A sample of 100 items, drawn from a universe with mean 
value 64 and S.D. 3, has a mean value 63.5. Is the difference in the means 
significant? What will be your inference, if the sample had 200 items? 

Question No:-5 A sample of 400 individuals is found to have a mean 
height of 67.47 inches. Can it be reasonably regarded as a sample from a large 
population with mean height of 67•39 inches and standard deviation 1.30 
inches? 

Question No:-6 A random sample of 400 is taken from a large number of 
coins. The mean weight of the coins in the sample is 28.57 gms and the s.d. is 
1.25 gms. What are the limits which have a 95% chance of including the mean 
weight of all the coins? 

Question No:-7  : A random sample of 110 days shows an average daily 
sale of Rs 60 with a s.d. of Rs 10 in a particular shop. Assuming a normal 
distribution, construct a 95% confidence interval for the expected sale per day. 

Question No:-8 Throw light on the need of the testing of hypothesis. 

Question No:-9. Discuss a hypothesis. What types of hypotheses do you 
know ? Discuss each of them. 

Question No:-10.The yield of two strains of a crop was found to be as 
given below: 

Strain 1 15.1,  20,  15,  38.7,    9,    12.3,  17,  36.5,   36 

Strain 2 13.8,  19,  12,  9.04,    7.6,  19,    29,   34.1,   18.08,  19.2,  16 

 

Test whether the mean yields of the two strains in general are equal. 

Perform the test at = 0.05. 
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Unit 3 Lesson NO.12 

NEYMAN-PEARSON LEMMA 

Structure: 

12.1   Introduction and objectives  

12.2 Derivation of N P Lemma 

12.3 Examples based on N P Lemma  

12.4 Self assessment Questions 

 

12.1 INTRODUCTION AND OBJECTIVES  

In statistics, the Neyman–Pearson lemma, named after Jerzy 
Neyman and Egon Pearson. The N-P lemma tells us that the best test for a simple 
hypothesis is a likelihood ratio test. While performing test of significance for 
simple null versus simple alternative it provides most powerful test at the level of 
significance. In practice, the likelihood ratio is often used directly to construct 
tests. However it can also be used to suggest particular test-statistics that might be 
of interest or to suggest simplified tests for this, one considers algebraic 
manipulation of the ratio to see if there are key statistics in it related to the size of 
the ratio (i.e. whether a large statistic corresponds to a small ratio or to a large 
one). 
 

12.2 DERIVATION OF N P LEMMA 

Let  be a critical region of the size  and k>0 be a constant such that 













 k
xf
xfSx

),(
),(:

0

1    









 k
L
LSx

0

1:           ……………….(i) 

https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Statistics.html
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Lemma_(mathematics).html
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Jerzy_Neyman.html
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Jerzy_Neyman.html
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Egon_Pearson.html
https://ipfs.io/ipfs/QmXoypizjW3WknFiJnKLwHCnL72vedxjQkDDP1mXWo6uco/wiki/Likelihood_function.html
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and








 k
L
LSx

0

1:     …..……………….(ii) 

Where 1L and 0L are the likelihood functions of the sample observations 

),.....,( 21 nxxxx   under 01 HandH respectively and  is the most powerful 

critical region of the test hypothesis  0H : 0 v/s 11 : H  

Proof: We are given 

 ]/[ 0HxP                       ……………(iii) 

Power of the region  

 ]/[ 1HxP 


11dxL               ……………(iv)  

 (say) 

Now in order to establish the lemma, we have to prove that there exists no 

other critical region of size less than equal to   which is more powerful than   

Let 1 be another critical region of the size 1  and its power is 11   

So that  

 101 ]/[  HxP  = 
1

0dxL         

…………………(v) 

 ]/[ 11 HxP 11   = 
1

1dxL                   .………………(vi) 

Now we have to prove that 

111      

Let CA   and CB1  (C may be empty i.e 1 and  may be 

disjoint) as shown in the figure 
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If 1 then we have 




 dxLdxL 00
1

 





CACB

dxLdxL 00  
AB

dxLdxL 00  

or  
BA

dxLdxL 00      ……………..(vi) 

Since A , (i)     
BAA

dxLkdxLkdxL 001                  

…………….(vii) 

                        [using (vi)] 

Now (ii) also implies that 


dxL1 


dxLk 0   

This result also holds for any subset of   say B 1  

Hence   
ABB

dxLdxLkdxL 101        [Using (vii)] 

Now adding 
C

dxL1  to both sides we get 




 dxLdxL 11
1

              111     

Hence the lemma. 
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12.3 EXAMPLES BASED ON NEYMAN PEARSON LEMMA  

Example: If )4,(~ NX to test 1:0 H against 1:1 H based on the 

sample of size 10 from the population whose critical region 

010...32 10321  xxxx .What is the size  and power )1(   of the test. 

Solution: critical region  010...32 10321  xxxx  

 Let 10321 10...32 xxxxu   since sxi ' are i.i.d. )4,(N   

then )385,55(~ 2u  )1540,55()4385,55(~  NNu  

The size  of the critical region is given by 

)/( 0HxP   = )/0( 0HuP   

Now under Ho 1  

 )1540,55(~ u  and we have 
u

uEuZ




][ =

1540
55u

  

under 0H  when 0u  

 4015.12428.39
55 Z   

 )4015.1(5.0)4015.1(  ZPZP =0.5-0.4192=0.1808 (from 

normal probability tables) 

Now power of the test is 

)1(  )/( 1HxP  = )/0( 1HuP    
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under 1:1 H , )1540,55(~u  

4015.12428.39
55  Z  and  

 )1(  = 5.0)04015.1(5.0)4015.1(  ZPZP  

  9192.05.04192.0   

 

Exercise: If X has a p.d.f. of the form 21),(
x

exf



  ,  x0 , 0 = 0 

  otherwise 

To test 2:0 H against 1:1 H use a random sample of size 2 and 

define critical region = 5.9,, 2121  xxxx . Find and . 

Soln:  = 5.9,, 2121  xxxx  

Now )/( 0HxP  =  021 /5.9 HxxP   ………………..(1) 

In sampling from exponential distribution 

2
)2(

1
~2

n

n

i
ix 





2
421 ~)(2




 xxu  

 P 



 




 021 /5.92)(2 Hxx = ]5.9[ 2
4 P  

 5.0  

Power of the test is given by 

 )1(  = )/( 1HxP  =  121 /5.9)( HxxP   

  = 



 




 121 /5.92)(2 HxxP = ]19[ 2
4 P  
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Example: Use Neyman-Pearson lemma to obtain the region for testing 

0  against 01   and 01   , in the case of normal population ),( 2N

where 2  is known. Hence find the power of the test. 

Soln.   



n

i
ixfL

1
),( =







 
















n

i
i

n

x
1

2
2 )(

2
1exp

2
1  

Using N-P lemma best critical region is given by 

 
0

1

L
L

k
x

x

n

i
i

n

i
i









 










 












1

2
02

1

2
12

)(
2

1exp

)(
2

1exp
 

kxx
n

i

n

i
ii 















 


  

 1 1

2
0

2
12 )()(

2
1exp  

)(
2

2
0

2
12 




n + kx
n

i
i log)(1

1
012 





      

  )( 01x
2

)(
log

2
0

2
1

2 


 k
n

   

Case (i) if 01  then BCR is determined by the relation (right tailed test) 

x
2

)(
)(

log. 01

01

2 



 k
n

 1 x (say) 

 BCR is   1:  xx   ………………….(i) 

Case (ii) If 01   then BCR is determined by the relation (left handed test) 
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x
2

)(
)(

log. 01

01

2 



 k
n

 2  (say) 

Hence BCR is  2:  xx         …………………….(ii) 

The constants 1  and 2  are so chosen as to make the probability of each 

of the relation (i) and (ii) equal to when 0H is true. 

Now sampling distribution of x when iH is true is ),(
2

ni


 , )1,0( i . 

Therefore the constants 1 and 2  are determined from the relations: 

 )/( 01 HxP  and  )/( 02 HxP  

 )/( 01 HxP 





















n

ZP 01   ; )1,0(~ NZ  

 



Z

n

01   


 Z
n01            

……………………(iii) 

Where Z ids the upper  -point of the standard normal variate given by  

 [P Z< Z ] =  

Also  )/( 02 HxP    1)/( 02 HxP  





















 102

n

ZP  

 



1

02 Z

n

  


 102 Z
n

   …………………(iv) 
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Power of the test  

1 =  )/( 1HxP  )/( 11 HxP ][ 11

n

ZP



  

= ][ 10 


 Z
n

ZP  

=















 

n
ZZP 01  01    

= ][1][1 33  ZP  Similarly in the case of (ii)  

1    =  )/( 12 HxP ][ 12

n

ZP



 = ][ 010 


 Z

n
ZP  using (iv) 

=















 

n
ZZP 10

1 = ][1 3  

Eq. (i) and (ii) provide BCR for testing 00 : H v/s 11 : H provided 

01   in the first case and 01   in the second case. 

Thus BCR for testing 00 : H v/s 0;: 11  ccH  will not serve 

as BCR for testing 00 : H v/s 0: 11  ccH . 

Hence in this problem no UMP test exists for testing simple hypothesis 

00 : H v/s 01 : H  

Example::Show that for a normal population with mean zero and variance 
2 the BCR for testing 1100 :/:  HsvH  is of the form 
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  10
1

2 


forax
n

i
i

    and      10
1

2 


forbx
n

i
i

  

show that the power of the BCR when 10   is 













2

2
1

2
0

,, nF where 

2
,n is the lower %100 and (.)F is the density function of 2  wi8th n-degrees of 

freedom. 

Soln: According to N P Lemma BCR is given by k
L
L


0

1  or 

 A
kL

L 1

1

0 (say) 

Or 




















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









  Ax
L
L

i

n
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2
1

2
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1

1

0

2
1.11exp  



































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 or 

































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i

2
2
1

2
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2
0

2
1

0

1

2
1log  











 2

2
1

2
0

2
0

2
1

2 i
x  LogA 












0

1logn    ……………….(*) 

When 01    BCR from (*) 

 2
i

x 






















 anLogA 2
1

2
0

2
1

2
0

0

1 2log  (say)  

i.e.,   ]:[ 2 axx i  ;for 01   
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When 01   BCR from (*) 

 2
i

x 






















 bnLogA 2
1

2
0

2
1

2
0

0

1 2log  (say) 

 i.e.,   ]:[ 2 bxx i  ;for 01   

The constants  banda  are so chosen so that size of critical region is   

 ][ 2 axP i     under 0H      

or 









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
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
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










    22

0

n

a                

 where 2

n
 is the lower %100  of chi-square distribution with n degrees of 

freedom given by 













 22

n
aP        

Hence BCR )(:/: 01100  HsvH is   ]:[ 22
0

2

n
ixx  

By definition power of the test is   

     1 =  )/( 1HxP  0
2 /HaxP i   
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          















 


1
2
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1

2
0

2
1

2
/HxP n

i  

 

12.4 SELF ASSESSMENT QUESTIONS 

Question No 1 Explain the concept of the most powerful tests and discuss 

how the Neyman-Pearson lemma enables us to obtain the most powerful crsitical 

region for testing a simple hypothesis against a simple alternative. 

Question No 2 State and prove Neyman-Pearson Fundamental Lemma for 

testing a simple hypothesis against a simple alternative.  

Question No 3 State Neyman-Pearson Lemma. Prove that if   an MP 

region for testing  

H0: 0 = 0 against H1 : 1  

then it is necessarily unbiased. Also prove that the same holds good if.   

is an 

UMP region.  
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Unit 4  Lesson 13 

SMALL SAMPLE TESTS 

Structure: 

13.1 Introduction 

13.2 Objectives  

13.3 Concept of small sample tests 

13.4 t-Test  of significance for Single Mean 

13.5 Assumption for Student’s t-test 

13.6 Examples based on t-Test of significance for Single Mean 

13.7 Self Assessment Questions 

 

13.1 INTRODUCTION 

In a test of hypothesis, a sample is drawn from the population of which the 

parameter is under test. The size of sample varies since it depends either on 

experimenter or resources available, moreover, the test statistic involves the 

estimated value of the parameter which depends upon the number of observations, 

So the sample size play a very important role in testing of hypothesis.  

When the sample size is small , such hypothesis testing can be achieved by 

using t-test, discovered by W.S. Gosset in 1908. He derived the distribution to 

find an exact test of a mean by making use of estimated standard deviation, based 

on a random sample of size n. R.A. Fisher in 1925 published that t-distribution 

can also be applied to the test of regression coefficient and other practical 

problems. In the present lesson we will learn to use the t test for the equality of 

single mean also the related confidence interval for population mean . 
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13.2 OBJECTIVES  

The main objectives of this lesson are 

1. To learn how to use samples to decide whether a population 

possesses a particular characteristic 

2. To determine how unlikely it is that an observed sample could 

have come from a hypothesized population. 

3. To understand how and when to use t distribution for testing 

hypotheses about population mean. 

4. To learn when to use one- tailed tests and when to use two-tailed 

tests while testing the hypothesis for equality of single mean. 

5. To understand the basic Concept of small sample tests 

 

13.3 CONCEPT OF SMALL SAMPLE TESTS 

In a test of hypothesis, a sample is drawn from the population of which the 

parameter is under test. The size of sample varies since it depends either on 

experimenter or resources available, moreover, the test statistic involves the 

estimated value of the parameter which depends upon the number of observations, 

So the sample size play a very important role in testing of hypothesis. For large 

samples (n>30) almost all the sampling distributions can be approximated to the 

normal, probability curve. However for small samples such hypothesis testing can 

be achieved by using t-test, F-test Chi-square test, Fisher’s Z transformations etc. 

 

13.4 t-TEST FOR SINGLE MEAN 

Suppose we want to test 
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(i) If a random sample xi (i = 1, 2…. n) of size n has been drawn from 

a normal population with a specified mean, say 0 or 

(ii) If the sample mean differs significantly from the hypothetical value 

0 of the population mean. 

Under the null hypothesis, H0: 

(i) The sample has been drawn from the population with mean 0  or 

(ii) There is no significant difference between the sample mean and the 

population mean 0  

The statistic  

n
S
x

t 0  follows Student’s t-distribution with (n-1) d.f

  

where 



n

i
ix

n
x

1

1  and 






n

i
i xx

n
s

1

22 )(
1

1  is an unbiased estimate of 2  

 To decide about the acceptance or rejection of null hypothesis we now 
compare the calculated value of t  with the tabulated value at certain level of 

significance . If calculated t >tabulated t, null hypothesis is rejected and if 

calculated t < tab. t, H0 may be accepted at the level of significance adopted for 
(n-1) degree of freedom. 

In many situations we may have limited data about the population so that 
we are required to estimate the confidence interval for the population mean with 
the help of a small sample. 

In such cases we can use the estimating methods outlined below provided 
the population is normal. 

Let us assume that the population is normal. Then we have to see whether 
the standard deviation of the population is known. If it is, then we can proceed as 
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in the case of large samples provided we use c in computing the confidence 
interval, 

The confidence interval will be  Zx   

If the population standard deviation is not known. In such a case we use 
the t distribution instead of the normal distribution. 

The 95% confidence limits for population mean is given by 

nStx /05.0   where nStx /05.0  is the upper confidence limit  

And nStx /05.0  is the lower confidence limit 

Similarly 99% confidence limits for population mean is given by

nStx /01.0  

Where degrees of freedom is (n -1). (This is because we have lost one 

degree of freedom by estimating  using the n sample values.) 

 

13.5 Assumption for Student’s t-test. 

The following assumptions are made in the Student’s t-test 

(i) The parent population from which the sample is drawn is normal. 

(ii) The sample observations are independent, i.e., the sample is random. 

(iii) The population standard deviation  is unknown. 

FOR CONFIDENCE INTERVAL 

We can now prepare a flow chart for estimating a confidence interval for 

L, the population parameter 
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13.6 EXAMPLES BASED ON T-TEST FOR SINGLE MEAN 

EXAMPLE:-A random sample of size 11 is selected from a symmetrical 

population with a unique mode. The sample mean and standard deviation are 200 

and 30 respectively. Find the 90% confidence interval in which the population 

mean   will lie. 

Here, X = 200  s = 30  n = 11 

Degrees of freedom = n- 1 = 11-1 = 10 

If we refer to the t table we see that for 10 degrees of freedom, the area in 

both tails combined is 0.10 or 10%, when t = 1.812. 

Hence, area under the curve between )/( nstx  and )/( nstx  is 

90% when t = 1.812. 
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Hence, we are 90% confident that the population mean lies in the interval 

183.61 to 216.39. 

Example :-A cinema hall has a cool drinks fountain supplying Orange and 

Colas. When the machine is turned on, it fills a 550 ml cup with 500 ml of the 

required drink. 

The manager has two problems on hand. 

i. The clients have been complaining that the machine supplies less than 

500 ml. 

ii. The two colas are supplied by two different manufacturers, each 

pressurizing him to drop the other supplier. Should he drop one? 

A random sample of size 16 is taken with x = 499 ml. and n = 16, VQC) is 

unknown but the sample variance 1.96 (ml)2. 

Case I 

Suppose the manager wants to minimize customer complaints. We may set 

up the test as follows: 

500:/500: 1  HsvHo  

Under the null hypothesis our test statistic is 
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follows Student’s t-distribution with (n-1)=15 d.f  
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
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 This is a left tailed test. But the critical point is being obtained from the t 

tables. 

Since n = 16, we need to look at the t15 distribution. If = 5%, the critical 

point is -1.753. (Since tables indicate that P(—l .753 <t15 < 1.753) =90%) 

                              

Critical region t15 <—1.753 

Since the observed value —2.857 <—1.753. 

Therefore H0 is rejected. 

Case 2 

Suppose the manager ignores customer’s complaints and instead wants to 

control the volume. That is, on an average, he does not want an excess outflow. 

We may set up the test as follows. 

500:/500: 1  HsvHo  

Under the null hypothesis our test statistic is                                    

16
4.1

5000 





x

n
S

xt    

  857.2
35.0

50099.4
35.0
500








x  

follows Student’s t-distribution with (n-1)=15 d.f  
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This is a right tailed test. The tabulate value of t obtained from the t tables 

for 15 degrees of freedom at %5  is 1.753 .  

So critival region is t15 > 1.753. 

 

                 

                               

Since —2.857 < 1.753, we accept H0 

Case 3 

Suppose, we combine case 1 and case 2. That is, the manager intends to 

minimize customer complaints and does not want an excess outflow, we may set 

up the test as follows. 

              500:/500: 1  HsvHo  

Under the null hypothesis our test statistic is 

                          

857.2

35.0
50099.4

35.0
500

16
4.1

5000















xx

n
S
xt

  

follows Student’s t-distribution with (n-1)=15 d.f  

This is a two tailed test. The tabulate value of t obtained from the t tables 

for 15 degrees of freedom at %5  is 1.753 .  
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Critical region t  > 1.753 

Since 857.2 >1.753 or we can say —2.857 lies in one (left) of the 

rejection regions, we reject H0.  

Remark:-If we use the t distribution for a one-tailed test, we need to 

determine the area located in only one tail. So to find the appropriate t value for a 

one-tailed test at a significance level of say 0.05 with 15 degrees of freedom, we 

would look under 0.10 column opposite the 15 degrees of freedom row. This is 

true because the 0.10 column represents 0.10 of the area under the curve contained 

in both the tails combined, and so it also represents 0.05 of the area under the 

curve contained in each of the tails separately. 

 

Example: A machinist is making engine parts with axle diameters of 

0.700 inch. A random sample of 10 parts shows a mean diameter of 0.742 inch 

with a standard deviation of O.040 inch. Compute the statistic you would use to 

test whether the work is meeting the specifications. Also state how you would 

proceed further. 

Solution. Here we are given: =0.700,  x =0.742   s=0.040  and   n=10 
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Null Hypothesis, H0 : = 0.700, i.e., the product is conforming to 

specifications. 

Alternative Hypothesis, H1 :  0.700 

Test Statistic. Under H0, the test statistic is: 

  

n
S
x

t 0  =

1

0





n
s
x follows Student’s t-dist.n with (n-1) d.f 

15.3
9

040.0
)700.0742.0( 0 


t  

How to proceed further: Here the test statistic ‘t’ follows Student’s t-

distribution with 10-1 = 9 d.f. We compare the calculated value with the tabulated 

value of t for 9 d.f. and at certain level of significance, say 5%. Let this tabulated 

value be denoted by t0. 

(1) If calculated ‘t’, viz., 3.15 > t0, we say that the value of t is significant. 

This implies that x differs significantly from  and H0 is rejected at this level of 

significance and we conclude that the product is not meeting the specifications. 

(ii) If calculated t < t0, we say that the value of t is not significant, i.e., 

there is no significant difference between x  and t0. In other words, the deviation (

x - ) is just due to fluctuations of sampling and null hypothesis H0 may be 

retained at 5% level of significance, i.e., we may take the product conforming to 

specifications. 

Ex: The mean weekly sales of soap bars in departmental stores as 146.3 

bars per store. After advertising campaign the mean weekly sales in 22 stores for a 

typical week increased to 153.7 and showed a standard deviation of 17.2. Was the 

advertising campaign successful? 
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Solution. We are given: n= 22,  x = 153.7, s =17.2. 

Null Hypothesis. The advertising campaign is not successful, i.e., H0  = 

146.3 

Alternative Hypothesis, H1: > 146.3 (Right-tail). 

Test Statistic. Under H0, the test statistic is : 

n
S

xt
2

0  follows Student’s 

t-dist.n with (22-1) d.f 

Or  03.9

21
)2.17(

3.1467.153
2




t  

Conclusion. Tabulated value of t for 21 d.f at 5% level of significance for 

single tailed test is 1.72. Since calculated value is much greater than the tabulated 

value, it is highly significant. Hence we reject the null hypothesis and conclude 

that the advertising campaign was definitely successful in promoting sales. 

Examples:A random sample of 10 boys had the following I.Q.’s : 70, 120, 

110, 101, 88, 83, 95, 98, 107, 100. Do these data support the assumption of a 

population mean I.Q. 100 ? Find a reasonable range in which most of the mean 

I.Q. values of samples of 10 boys lie. 

Solution. Null hypothesis, H0 : The data are consistent with the 

assumption of a mean I.Q. of 100 in the population, i.e.,  = 100. 

Alternative hypothesis, H1:   100        

Under H0, the test statistic is  

)1(2
0 ~ 


 nt

n
S

x
t  
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Where x  and s2 are to be computed from the sample values of I.Q.’s. 

CALCULATIONS FOR SAMPLE MEAN AND S.D 

x x-x 




n

i
i xx

1

2)(

 

70 

120 

110 

101 

88 

83 

95 

98 

107 

100 

 

-22.7 

22.8 

12.8 

3.8 

-9.2 

-14.2 

-2.2 

0.8 

9.8 

2.8 

739.84 

519.84 

163.84 

14.44 

84.64 

201.64 

4.84 

0.64 

96.04 

7.84 

Total  972  1833.60 

 

   Here n=10,
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9

60.1833)(
1
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10
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1
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Tabulated t0.05 for (10-1), i.e., 9 d.f. for two-tailed test is 2.262. 

Conclusion. Since calculated t is less than tabulated t0.05 for 9 d.f., H0 may 

be accepted at 5% level of significance and we may conclude that the data are 

consistent with the assumption of mean I.Q. of 100 in the population. 

The 95% confidence limits within which the mean I.Q. values of samples 

of 10 boys will lie are given by  

 99.8641.10721.102.97514.4262.22.97/05.0 andnStx   

 

Hence the required 95% confidence interval is [86.99, 107.41]. 

 

Ex: The heights of 10 males of a given locality are found to be 70, 67, 62, 

68,61, 68, 70, 64, 64, 66 inches. Is it reasonable to believe that the average height 

is greater than 64 inches ? Test at 5% significance level assuming that for 9 

degrees of freedom P (t> l.83) =0.O5. 

Solution. Null Hypothesis, H0:  = 64 inches                 

Alternative Hypothesis, H1:  > 64 inches 

X 70 67 62 68 61 68 70 64, 64 66 Total  660 

 XX   4 1 -4 2 -5 2 4 -2 -2 0  

 2XX  16 1 16 4 25 4 16 4 4 0 90 

Here  

10
9

90)(
1

166
10
660

1

22 





 


n

i
i xx

n
Sand

N
Xx  
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Under H0, the test statistic is: 2
10/10
6466

2








n
S

xt     

which follows Student’s t-distribution with 10-1 = 9 d.f. Tabulated value 

of t for 9 d.f at 5% level of  significance for single (right) tail-test is 1.833. (This is 

the value t0.10 for 9 d.f in the two-tailed tables) 

Conclusion. Since calculated value of t is greater than the tabulated value, 

it is significant. Hence H0 is rejected at 5% level of significance and we conclude 

that the average height is greater than 60 inches. 

EXAMPLE: A random sample of 16 values front a normal population 

showed a mean of 41 •5 inches and the sum of squares of deviations front this 

mean equal to 135 square inches. Show that the assumption of a mean of 43.5 

inches for the population is not reasonable. Obtain 95 per cent and 99 per cent 

fiducial limits for the same. 

Solution;-We are given    

n=16,

 inchessquarexxandinchesx
n

i
i 135)(5.41

1

2  


 

667.2
3
8

4/3
5.435.41




t  

Conclusion:- Since calculated t  is greater than 2.131, null hypothesis is 

rejected 

99% fiducial limits for population mean   is given 
n
Stx 05.0   
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n
Stx 05.0

098.43902.39598.15.41
4
3131.25.41   

Similarly 99% fiducial limits for population mean is given by 

nStx /01.0
098.4329.3929.3971.434/3947.25.41  and  

13.7 Self assessment questions 
1. A  random sample of size 12 taken from a population of size 64 

with s.d of 3 inches. Check the assumption that population mean 
height is 65 , also set up the probable limits for mean height of the 
population. 

2. A random sample of size 200 is  taken from  a large number of 
coin. The mean weight of the sample of coins is 25.50 gms and s.d 
of 1.21 gms. Construct 95% CI for mean weight of coin in the 
population.  

3. A random sample of 10 days  shows an average daily sale of Rs.50 
with a s.d  of  Rs.10 is  taken from  a large number of coin. The 
mean weight of the sample of coins is 25.50 gms and s.d of 1.21 
gms. Construct 95% CI for mean weight of coin in the population.  

4. (a) Under what circumstances can normal distribution be used to 
find confidence limit of population mean . 

 (b) When we use to construct confidence interval estimate of 

population mean . 

5. A  random sample of size 10 taken from a normal population has 

mean 40 with s.d of 12 inches. Check the assumption that 

population mean height is 45 , also set up the 95% probable limits 

for mean height of the population. 

(Given fdfort .925.305.0  ) 
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Unit 4 Lesson 14 

SMALL SAMPLE TESTS 

14.1 Introduction 

14.2 Objectives  

14.3 t-Test for Difference of Means 

14.4 Paired t-test for Difference of Means 

14.5 Examples based on t-Test for Difference of Means and Paired t-test 

14.6 t-test for testing the significance of observed sample correlation 

coefficient 

14.7 Examples based on t-test for testing the significance of observed sample 

correlation coefficient 

14.8 Self Assessment Questions 

 

14.1 INTRODUCTION 

When the sample sizes are small, there are two technical changes in our 
procedure for testing the differences between means. The first involves the way 
we compute the estimated standard error of the difference between the two sample 
means. Here we base our small-sample tests on the t distribution, rather than the 
normal distribution.  

In the present lesson we have demonstrated how to use samples from two 
populations to test hypotheses about how the populations are related , how 
hypothesis tests for differences between population means take different forms 
when samples are large or small. Further after the careful study of this lesson will 
enable the learner to distinguish between independent and dependent samples 
when comparing two means and to learn how to reduce a hypothesis test for the 
difference of means from dependent .   
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14.2 Objectives  

1. To learn how to use samples from two populations to test 

hypotheses about how the populations are related 

2. To learn how hypothesis tests for differences between population 

means take       

           different forms;  when the  samples are of  small size 

3. To distinguish between independent and dependent samples when 

comparing two means 

4. To learn how to reduce a hypothesis test for the difference of 

means from dependent samples to a test about a single mean 

5. To understand how probability values can be used in testing 

hypotheses 

 

14.3 t-TEST FOR DIFFERENCE OF MEANS.  

Suppose we want to test if two independent samples xi, (i = 1,2 …n1) and 

Yj’ (j= 1, 2, ..., n2) of sizes n1 and n2 have been drawn from two normal 

populations with means x and y  respectively. 

Under the null hypothesis (H0) that the samples have been drawn from the 

normal populations with means x  and y i.e., Ho: x = y  or Ho: x - y =0  and 

under the assumption that the population variance are equal, i.e., 2
x = 2

y = 2

(say) but unknown, the statistic  
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t at   level of significance  

Under the null hypothesis Ho: x = y  the test statistic is given by 
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is an unbiased estimate of 2  based on both the samples 

By comparing the calculated value of t with its tabulated value for 

)2( 21  nn degrees of freedom at   level of significance ( usually 5% or 1%) 

we either reject or retain the null hypothesis 

 

14.4 PAIRED T-TEST FOR DIFFERENCE OF MEANS 

This test is applicable only when the two samples are not independent and 

the observations are taken into pairs.  Let us now consider the case when 

(i) the sample sizes are equal, i.e., n1 = n2 = n (say), and 

(ii) the two samples are not independent but the sample observations are 

paired together, i.e., the pair of observations (xi, yi), (i = 1, 2, ..., n) corresponds to 

the same (ith) sample unit.  

The problem is to test if the sample means differ significantly or not. 
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For example, suppose we want to test the efficacy of a particular drug, say, 

for inducing sleep. Let xi and yi ,(i = 1, 2, ..., n) be the readings, in hours of sleep, 

on the ith individual, before and after the drug is given respectively. Here the 

observations are paired and dependent so we apply the paired t-test. Here we 

consider the increments, di= xi- yi ,   (i = 1, 2, ..., n) 

Under the null hypothesis, H0 that increments are due to fluctuations of 

sampling, i.e., the drug is not responsible for these increments, the statistic 

n
S

dt
2

   

where where 



n

i
id

n
d

1

1  and 






n

i
i dd

n
S

1

22 )(
1

1  is an unbiased 

estimate of 2 follows Student’s t-distribution with (n-1) d.f. 

Depending upon whether tcal is less than or greater than tabulated value of 

at (n-1) degrees of freedom at  level of significance we may accept or reject the 

null hypothesis. 

 

14.5 EXAMPLES BASED ON T-TEST FOR DIFFERENCE OF MEANS AND 

PAIRED T-TEST 

EXAMPLE. Below are given the gain in weights (in kgs.) of pigs fed on 

two diets A and B. 

Gain in weight 

Diet A : 25,  32,  30,  34,  24,  14,  32,  24,  30,  32,  35,  25 

Diet B : 44,  34,  22,  10,  47,  32,  40,  30,  32,  35,  22,  35,  29,  22 

Test, if the two diets differ significantly as regards their effect on increase 
in weight. 
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Solution. Null hypothesis, H0 yx    i.e., there is no significant 
difference between the mean increase in weight due to diets A and B. 

Alternative hypothesis, H1 yx    (two-tailed). 

Diet A Diet B 

 x  (x- x )  )( xx   Y (y- y )  )( yy  

 25 -3 9 

 32 4 16 

 30 2 4 

 34 6 36 

 24 -4 16 

 14 -14 196 

 32 4 16 

 24 -4 16 

 30 2 4 

 31 3 9 

 35 7 49 

 25 -3 9 

 44 14 196 

 34 4 16 

 22 -8 64 

 10 -20 400 

 47 17 289 

 31 1 1 

 40 10 100 

 30 0 0 

 32 2 4 

 35 5 25 

 18 -12 14 

 21 -9 81 

 35 5 25 

 29 -1 1 

 22 -8 64 

336x  

380)(  xx  

450y                                    

1410)(  yy  
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Here      n1=12,  n2=15       n=16, 30
15
45028

12
336

 yandx  
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Under null hypothesis (Ho): )2(
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So that          609.0
74.10

2

15
1

12
16.71

30.28











 

t    

 Tabulated value of t0.05 for (12+15-2)=25 degrees of freedom is 2.06 

Conclusion. Since calculated t is less than tabulated t, H0 may be 

accepted at 5% level of significance and we may conclude that the two diets do 

not differ significantly as regards their effect on increase in weight. 

 EXAMPLE: Samples of to types of electric light bulbs were tested for 

length of life and fol1owing data were obtained: 

Type I   Type II 

Sample No  81 n    72 n  

Sample means  12341 x   10362 x  

Sample S.D.’s  361 s   402 s  

Is the difference in the means sufficient to warrant that type I is superior to 

type II regarding length of life? 
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Solution. Null Hypothesis, H0 21  i.e., the two types I and II of 

electric bulbs are identical. 

Alternative Hypothesis, H1: 21  , i.e., type I is superior to type II. 

Test Statistic. Under H0, the test statistic is  

)2(
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                  =  22 )40(7)36(8
278

1



 =1659.08  and   

            t = 






 



7
1

8
11659

10361234
 = 9.39 

Tabulated value of t for 13 df. at 5% level of significance for right 

(single)-tailed test is 1.77.  

Conclusion. Since calculated It’ is much greater than tabulated value of t’, 

it is highly significant and H0 is rejected. Hence the two types of electric bulbs 

differ significantly.  
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EXAMPLE: To test the claim that the resistance of electric wire can be 

reduced by at least 0.05 ohm by alloying, 25 values obtained for each alloyed wire 

and standard wire produced the following results 

Mean  Standard deviation  

Alloyed wire  0.083 ohm  0.003 ohm 

Standard wire  0.136 ohm  0.002 ohm 

Test at 5% level whether or not the claim is substantiated. 

Solution. Null Hypothesis, H0 05.0 yx i.e., the claim is sustained. 

Alternative Hypothesis, H1: 05.0 yx , left tailed test. 

Under H0, the test statistic is                                                         

        cesignificanoflevelatt

nn
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xxt nn 
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The (critical) tabulated value of t for 48 d.f., at 5% level of significance for 

left tailed test is - 1•645. 

Conclusion: Learner are advised to write the conclusion themselves. 
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Example: In a certain experiment to compare two types of animal foods A 

and B, the following results of increase in weights were observed in animals: 

Animal number 1     2     3     4     5     6     7     8 Total 

Increase in               Food A 

weight                     Food B 

49   53   51   52   47  50   52   53 

52   55   52   53   50   54   54   53 

407 

423 

 

(i) Assuming that the two samples of animals are independent, can we 

conclude that food B is better than food A ? 

(ii) Also examine the case when the same set of eight animals were 

used in both the foods. 

Solution. Null Hypothesis, H0 : If the increase in weights due to foods A 

and B are denoted by X and Y respectively, then H0: yx  i.e., there is no 

significant difference in increase in weights due to diets A and B. 

Alternative Hypothesis, H1: yx   (Left-tailed).  

(i) If the two samples of animals be assumed to be independent, then we 

will apply t-test for difference of means to test H0. yx   and test statistic is 

                 )2(
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and                17.2

8
1

8
141.3

875.52875.50
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t  

And t =Tabulated t0.05 for (8 +8 -2) = 14 d.f for one-tail test is 1•76. 

Conclusion. The critical region for the left-tail test is t <-1.76. Since 
calculated t is less than-—1.76, H0 is rejected at 5% level of significance. Hence 
we conclude that the foods A and B differ significantly as regards their effect on 
increase in weight.  

(ii) If the same set of animals is used in both the cases, then the readings X 
and Y are not independent but they are paired together and we apply the paired t-
test for testing H0. 
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X  49     53     51     52     47     50     52     53 Total 

Y  52     55     52     53     50     54     54     53  

d=X-Y -3     -2      -1     -1      -3      -4     -2       0 -16 
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Tabulated t0.s05 for (8- 1) = 7 d.f. for one-tail test is 1.90. 

Conclusion. the observed value of ‘t’ is significant at 5% level of 

significance and we conclude that food B is superior to food A. 

 

14.6 T-TEST TOR TESTING THE SIGNIFICANCE OF AN OBSERVED SAMPLE 

CORRELATION COEFFICIENT 

If r is the observed correlation coefficient in a sample of n pairs of 

observations from a bi-variate normal population, then Prof. Fisher proved that 

under the null hypothesis, H0: =0, i.e., population correlation coefficient is zero, 

the statistic  

)2(
)1( 2




 n
r

rt  

follows Student’s t-distribution with (n- 2) d.f. 

If the value of t comes out to be significant, we reject H0 at the level of 

significance adopted and conclude that 0 , i.e., ‘r’ is significant of correlation 

in the population. If t comes out to be non-significant, then H0 may be accepted 

and we conclude that variables may be regarded as uncorrelated in the population. 

 

14.7 EXAMPLES BASED ON T-TEST FOR TESTING THE SIGNIFICANCE OF 

OBSERVED SAMPLE CORRELATION COEFFICIENT 

EXAMPLE: (a) A random sample of 27 pairs of observations from a 
normal population gave a correlation coefficient of 0.6. Is this significant of 
correlation in the population? 

(b) Find the least value of r in a sample of 18 pairs of observations from a 
bi-variate normal population, significant at 5% level of significance. 
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Solution. (a) We set up the null hypothesis, H0:  =0, i.e., the observed 

sample correlation coefficient is not significant of any correlation in the 
population, under null hypothesis our test statistic is 

)2(
)1( 2




 n
r

rt  follows Student’s t-distribution with (n- 2) d.f. 

           75.3
64.0

3)227(
)36.01(

6.0



t  

Tabulated t0.05 for (27-2) = 25 d.f. is 2.06. 

Conclusion. Since calculated t is much greater than the tabulated t, it is 

significant and hence H0 is discredited at 5% level of significance. Thus we 

conclude that the variables are correlated in the population. 

(b) Here n = 18. From the tables t0.05 for (18-2) = 16 d.f. is 2.12.Under 

null hypothesis, H0:  =0 

)2(
)1( 2




 n
r

rt  follows Student’s t-distribution with (n- 2) d.f. 

 

In order that the calculated value of t is significant at 5% level of 

significance, we should have 

 

12.216
)1(

)2(
)1( 205.02


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 r

rtn
r

r  

493.4493.20)1()12.2(16 2222  rorrr  

2192.0
493.20

493.42 ror  



 197

Hence 4682.0r  

EXAMPLE: A coefficient of correlation of 0.2 is derived from a random 

sample of 625 pairs of observations. (1) Is this value of r significant ? (ii) What 

are the 95% and 99% confidence limits to the correlation coefficient in the 

population ? 

Sol:  under null hypothesis, H0:  =0, the test statistic is 

09.5)2625(
)04.01(

2.0)2(
)1( 2







 n
r

rt                     

Since d.f 625- 2 = 623, the significant values of t are same as in the case of 

normal distribution, viz., t0.05=1.96 and t0.01 = 2.58. Since calculated t is much 

greater. Write result accordingly 

95% confidence limits to the correlation coefficient of population are  

n
rrrESr )1(96.1)(.96.1

2
  

)275.0,125.0(075.02.0
625
96.096.12.0   

and 99% confidence limits to the correlation coefficient in the population  

are 

)299.0,101.0(099.02.0
625
96.058.22.0   

 

14.8 SELF ASSESSMENT QUESTIONS 

Question No:-1Two independent random samples of sizes 8 and 6 are 

drawn from normal population with unknown means , 21  and  and variances 
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32 and 30 respectively. If the sample means are 68.1 and 60.4 respectively, Teat 

for the equality of population means, find 95% confidence limits for the difference 

of population means. 

Question No:-2 Two independent random sample of size 8 and 6 are drawn 
from two normal populations whose means and variances are unknown. If the 
samples have means 28.3 and 20.8, and standard deviations 6 and 5 respectively, 
find 95% confidence limits for the difference of population means. State the 
necessary assumption. (Value oft for 12 d.f. is t0.25 = 2.18). 

Question No:-3  Nine computer-components dealers in major metropolitan 

areas were asked for their prices on two similar color inkjet printers. The results of 

this survey are given below. At = 0.05, is it reasonable to assert that, on 

average, the Apson printer is less expensive than the HP printer? 

Dealer  1 2 3 4 5 6 7 8 9 

Apson price 250 319 285 260 305 295 289 309 275 

HP price 270 325 269 275 289 285 295 325 300 

 

Question No:-4 Sherri Welch is a quality control engineer with the 
windshield wiper manufacturing division of Emsco, Inc. Emsco is currently 
considering two new synthetic rubbers for its wiper blades, and Sherri was 
charged with seeing whether blades made with the two new compounds wear 
equally well. She equipped 12 cars belonging to other Emsco employees with one 
blade made of each of the two compounds. On cars 1 to 6, the right blade was 
made of compound A and the left blade was made of compound B; on cars 7 to 
12, compound A was used for the left blade. The cars were driven under normal 
operating conditions until the blades no longer did a satisfactory job of clearing 
the windshield of rain. The data below give the usable life (in days) of the blades.  

At   = 0.05, do the two compounds wear equally well? 
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Car 1 2 3 4 5 6 7 8 9 10 11 12 

Left blade 162 323 220 274 165 271 233 156 238 211 241 154 

Right blade 183 347 247 269 189 257 224 178 263 199 263 148 

Question No:-5 Ten soldiers visit a rifle range for two consecutive weeks. 

For the first week their scores are: 67, 24, 57, 55, 63, 54, 56, 68, 33, 43 and during 

the second week they score in the same order— 70, 38, 58, 58, 56, 67, 68, 72, 42, 

38 

 
 Examine if there is any significant difference in their performance. 
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Unit 4 Lesson 15 

SMALL SAMPLE TESTS 

Structure: 

15.1 Introduction 

15.2 Objectives  

15.3 F-test for Equality of Two Population Variances 

15.4 Shape of F-distribution and tabulated values 

15.5 Illustration 

15.6 Examples 

15.7 Self Assessment Questions 

 

15.1 INTRODUCTION 

F- Distribution is a very popular and useful distribution because of its 

utility in testing of hypothesis about the equality of several population means, two 

population variances and several regression coefficients in multiple regression etc. 

As a matter of fact, F-test is the backbone of analysis of variance. 

This distribution was discovered by G.W.Snedecor and named in the honor 

of the  Distinguish mathematical statistician Sir R.A Fisher. It may be recalled that 

the t statistic is used for testing whether two population means are equal. 

Whenever we are required to test for the case of more than two means, this  can be 

tested by comparing the sample variances using F distribution by the use of 

analysis of variance technique which consist of “separation of variation due to a 

group of  
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causes from the variation due to other groups”. F ration is basically ratio of 

between column variance and within column variance, having found F ratio we 

can interpret it First, examine the denominator., which is based on the variance 

within the samples. The denominator is a good estimator of 2 (the population 

variance) whether the null hypothesis is true or not. What about the numerator? If 

the null hypothesis is true, then the numerator, or the variation among the sample 

means, is also a good estimate of 2  (the population variance). As a result, the 

denominator and numerator should be about equal if the null hypothesis is true. 

The nearer the F ratio comes to 1, then the more we are inclined to accept the null 

hypothesis Conversely, as the F ratio becomes larger, we will be more inclined to 

reject the null hypothesis and accept the alternative (that a difference does exist in 

the effects of the three training methods). 

In short ,when populations are not the same, the between-column variance 

(which was derived from the variance among the sample means) tends to be larger 

than the within-column variance (which was derived from the variances within the 

samples), and the value of F tends to be large. This leads us to reject the null 

hypothesis. 

Summing up, F- distribution is a very popular and useful distribution 

because of its utility in testing of hypothesis about the equality of several 

population means, two population variances and several regression coefficients in 

multiple regressions etc.  

In fact this sampling distribution is widely used in different ways while 

testing different null hypotheses about a variety of population parameters. 

 

15.2 Objectives  

The objectives of this lesson is 
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 To introduce the F distribution and learn how to use them in statistical 

inferences 

 To recognize situations requiring the comparison of more than two 

means or proportions 

 To compare more than two population means using analysis of 

variance 

 To use the F distribution to test hypotheses about equality of two 

population variances 

 

15.3 F-test for Equality of Two Population Variances:  

F- distribution is a very popular and useful distribution because of its 

utility in testing of hypothesis about the equality of several population means, two 

population variances and several regression coefficients in multiple regression. In 

the present section we will  use this test statistic t for Equality of Two Population 

Variances 

 Suppose we want to Test 

(i) whether two independent samples xi, (i = 1, 2 n1) and yj, (I = 1, 2 

n2) have been drawn from the normal populations with the same 

variance 
2  (say), or 

(ii) whether the two independent estimates of the population variance 

are homogeneous or not. 

Under the null hypothesis (H0) that (i) 222  yx ,  

i.e., the population variances are equal, or  
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(iii) Two independent estimates of the population variance are 

homogeneous, the statistic F is given   by 
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are unbiased estimates of the common population variance σ2 obtained 

from two independent samples and it follows Snedecor’s F-distribution with 

 21 ,   d,f. where 1n11  and 1n 22  . 

By comparing the calculated value of F obtained by using above formula 

for the two given samples, with the tabulated value of F for (n1,n2) d.f. at certain 

leve1 of significance (5% or 1%), H0 is either rejected or accepted.  

Proof:-              

     2
y

2
x

S
SF   

                    =








































 1

1.
1

1.
11 2

2

2
2

1
2

2
12

2

22

1

1

n
sn

n
sns

n
ns

n
n

y

y

x

x
yx                                

  

   As under null hypothesis 222  yx  

Since 2

2
1

x

xsn


 and 2

2
2

y

ysn


 are independent chi-square variates with (n1- 1) 

and (n2-1) d.f. respectively, follows Snedecor’s F-distribution with (n1-1, n2-1) d.f. 
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As a norm larger of two variances is taken along numerator and the 

degrees of freedom corresponding to it is denoted by 1  

If the calculated value of F is greater than its tabulated value for (n1- 1, n2-

1) degrees of freedom at  level, of significance we reject the null hypothesis 

otherwise we may retain it. 

 

15.4 SHAPE OF F-DISTRIBUTION AND TABULATED VALUES 

Similar to Chi Square distribution, F distribution is also a family of 

distributions. As the number of degrees of freedom varies, so is the shape of the 

distribution. For small numbers of degrees of freedom the curve is skewed 

extremely to the right and as the number of degrees of freedom increases the 

distribution tends to become symmetrical. The degree of skewness for some of the 

degrees of freedom is shown below.  
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In F distribution, we have two degrees of freedom as compared to one in 

Chi Square distribution. The number of degrees of freedom is expressed as 

),( 21  . Where 1  referring to number of degrees of freedom for the numerator 

and 2  representing the same for the denominator. From the F tables, the value of 

the F statistic is obtained at the point of intersection of 1  and 2  at the 

corresponding level of significance. For the numerator we have to move column 

wise whereas for the denominator, we move row wise. For this distribution also 

the tables are given for the significance levels most often used. 

 

15.5 ILLUSTRATIONS 

Illustration:-A Quality Control Engineer at Zen Automobiles wants to 

check the variability in the number of defects in the cars coming from two 

assembly lines A and B. When he collected data it was as shown below. 

Number of Defects 

                                         Assembly_Line A             Assembly Line B 

                  Mean                    10                                        11 

            Variance                      9                                         25 

       Sample Size                     20                                       16 

Can he conclude that the assembly line B has more variability than line A? 

Test the hypothesis at significance level of 5%. 

Solution:-We set-up the hypothesis such that we do not have to test the 

hypothesis at the lower tail of the distribution. The null and the alternative 

hypothesis will be as follows: 



 206

2
2

2
10 : H  (Null Hypothesis: The number of defects has same 

variability) 

2
2

2
10 : H  (Alternative Hypothesis: The number of defects from the 

assembly line B is more than that from line A) 

Significance level = 5%. 

Under null hypothesis We now calculate the F statistic 

  78.2
9
25

2
2

2
1 

s
sF  

From the tables, at a significance level of 0.05, 5 degrees of freedom in the 

numerator and 19 degrees of freedom in the denominator, the value of the F 

statistic is 2.23. This is represented in the figure below. 

 

Since, the calculated value falls outside the acceptance region we reject the 

null hypothesis. 

Illustration(two-tailed test): Two populations which are believed to have 

same variance were taken. However, on examination of the samples it was found 

that sample A (sample size 16) had a variance of 3.75 and for sample B (sample 

size 10) had a variance of 5.38. Formulate an appropriate hypothesis and test it at 

a significance level of 10% and state your conclusion. 
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Solution: We are given that 

1n = 16 and 2
1s =3.75 

1n =10 and 2
2s  = 5.38 

The hypothesis will be 

2
2

2
10 : H  (Null Hypothesis: Populations have the same variance) 

2
2

2
11 : H  (Alternative Hypothesis: Populations do not have the same 

variance) 

Under null hypothesis our test statistic is  

697.0
38.5
75.3

2
2

2
1 

s
sF  

 

The number of degrees of freedom in the numerator is 16 - 1 = 15 and in 

the denominator it is 10 - 1 = 9. Since we require both the limits, the limit F(l5, 9, 

0.05) is directly obtained from the tables. Its value is 3.01. Now how do we get the 

value for the limit F(15, 9, 0.95), as at this level the values are not given in the 

tables. Here also we take the inverse of 2
2

2
1

s
s , . The inverse of 2

2

2
1

s
s  will be 2

1

2
2

s
s . 

We know that  F(n, d, ) = 
 )-1 d, F(n,

1


 

where, 

n is the degree of freedom in the numerator 

d is the degree of freedom in the denominator 

 is the significance level. 
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The value of 2
1

2
2

s
s  will be 0.332. 

Both these values give our limits as shown in the figure below. 

 

 

Conclusion: Since the value of the calculated statistic falls in the 

acceptance region, we conclude that the samples belong to two populations which 

have the same variance. 

 

14.6 EXAMPLES 

EXAMPLE: Below given are the two random samples of sizes 12 and 15 

respectively with values as given below 

Sample-A 25, 32, 30, 34, 24, 14, 32, 24, 30, 31 35, 25, 

Sample- B 44, 34, 22, 10, 47, 31, 40, 30, 32, 35, 18, 21, 35, 29, 22 

Check the hypothesis that the samples came from the same normal 

populations with identical variances 

Solution Let us set the null hypothesis 

2
2

2
10 : H  (Null Hypothesis: Populations have the same variance) 
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2
2

2
11 : H  (Alternative Hypothesis: Populations do not have the same 

variance) 

CALCULAION TABLE 

Sample-A Sample- B 

x  (x- x )  )( xx  Y (y- y )  )( yy  

25 -3 9 

32 4 16 

30 2 4 

34 6 36 

24 -4 16 

14 -14 196 

32 4 16 

24 -4 16 

30 2 4 

31 3 9 

35 7 49 

25 -3 9 

44 14 196 

34 4 16 

22 -8 64 

10 -20 400 

47 17 289 

31 1 1 

40 10 100 

30 0 0 

32 2 4 

35 5 25 

18 -12 14 

21 -9 81 

35 5 25 

29 -1 1 

22 -8 64 

336x                      380)(  xx  450y                    

1410)(  yy  
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Under the null hypothesis our test statistic is 

2
y

2
x

S
SF 

 

It follows Snedecor’s F-distribution with  21 ,   d,f. where 1n11 

and 1n 22  . 
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9157.2
54.34
71.100

S
S

F 2
x

2
y   follows Snedecor’s F-distribution with 

 12,  

The tabulated value of  F(14,11) at 5% level of significance is 2.72 which 

is less that the calculated 2.9147 value so we reject the null hypothesis and 

conclude that  Populations do not have the same variance 

 

 

EXAMPLE: In one sample of 8 observations, the sum of the squares of 

deviations of the sample values from the sample mean was 84.4 and in the other 

sample of 10 observations it was 102.6. Test whether this difference is significant 
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at 5 per cent level, given that the 5 per cent point of F for n1 = 7 and n2 = 9 

degrees of freedom is 3.29. 

 Solution:-Here 

4.84)(6.102)(108 22
21  xxandyyandnn  

                057.12
7

4.84)(
1

1 1

1

2

1

2 


 


n

i
ix xx

n
S    

and    






2

1

2

2

2 4.11
9

6.102)(
1

1 n

j
jy yy

n
S  

Let us make the following assumption  

222  yx i.e., the estimates of 2  given by the samples are 

homogeneous. 

Then the test statistic under null hypothesis is 

 

057.1
4.11

057.12
2

2


y

x

S
SF  

Tabulated F0.05 for (7, 9) d.f is 3.29Since calculated F <F0.05, H0 may be 

accepted at 5% level of significance. 

 

EXAMPLE:. Two random samples gave the following results 

Sample No 1 2 

Sample  Size 10 12 

Sample mean 15 14  

Sum of squares of deviations from mean 90 108 
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Test whether the samples come from the same normal population at 5% 

level of significance. 

 

 ,07.2)22(,086.2)20(10.3)9,11(90.2)11,9(: 05.005.005.005.0  ttandFFGiven
 

Solution. A normal population has two parameters, viz., mean . and 

variance 2 . To test if two independent samples have been drawn from the same 

normal population, we have to test (i) the equality of population means, and (ii) 

the equality of population variances. 2
2

2
1210 :  andH  

Null Hypothesis: The two samples have been drawn from the same normal 

population,  Equality of means will be tested by applying t-test and equality of 

variances will be tested by applying F-test. Since t-test assumes 2
2

2
1   , we shall 

first apply F-test and then t-test. In usual notations,  

we are given: 
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S
SF  follows F distribution with ( 11 n ,

12 n ) degrees of freedom 
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Tabulated F0.05 (9,11) = 2.90. Since calculated F is less than tabulated F, it 

is not significant. Hence null hypothesis of equality of population variances may 

be accepted. 

 

t-test:  under the null hypothesis our test statistic is    
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        Tabulated t0.05 for 20 d.f. = 2.086.Since the calculated value of t is 

less than its tabulated value se we accept the null hypothesis regarding the 

equality of population means 

 Since both the hypotheses are accepted, we may regard that the given 

samples have been drawn from the same normal population.  

 

15.7 SELF ASSESSMENT QUESTIONS 

QUESTION No 1: A random sample of 16 values from a normal 
population has a mean of 41.5 inches and sum of squares of deviations from the 
mean is equal to 135 inches. Another sample of 20 values from art unknown 
population has a mean of 43.0 inches and sum of squares of deviations from their 
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mean is equal to 171 inches. Show that the two samples may be regarded as 
coming from the same normal population. 

 

QUESTION No 2: The household net income from property and 

entrepreneurship in France 

And Germany. follows: 

China : 15.0,  8.0,  3.8,  6.4, 27.4,  19.0,  35.3, 13.6 

Japan: 18.8,  23.1,  10.3,  8.0, 18.0,  10.2,  15.2,  19.0, 20.2 

Test the equality of variances of household net income in China and Japan 

 

QUESTION No 3 Following data give the distribution of women ever 

married by age. 

Test whether the data have come from a normal population. 

Age group No. of women 

15—19 

19—23 

23—27 

27—31 

31—35 

35—39 

39—43 

43—47 

47—51 

3 

43 

62 

38 

24 

14 

11 

5 

2 
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QUESTION No 4 Two random samples taken from two normal 

populations are as follows. Estimate the variances of populations and test that the 

two populations have equal variances. 

 

Sample I: 20,  16,  26,  27,  23,  22,  18,  24,  25,  19 

Sample II:17,  23,  32,  25,  22,  24,  28,  18,  31,  33, 20, 27 

 

QUESTION No 5 Given the following information about two samples 

from two normal populations, n1 = 10, s1 = 1.97, n2 = 8 and s2 = 3.21. 

Can it be concluded that both the samples have come from populations 

having the same variability. 
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Unit 4  Lesson 16 

SMALL SAMPLE TESTS 

Structure: 

16.1 Introduction 

16.2 Objectives  

16.3 Precautions about Using the Chi-Square Test 

16.4 2 test for Inferences about a Population Variance 

16.5 Illustrations 

16.6 Examples based on 2 test for Inferences about a Population Variance 

16.7 2 test for goodness of fit 

16.8 Examples based on 2 test for Goodness of Fit Test. 

16.9 2 Test of Independence of Attributes 

16.10 Examples based on 2 Test of Independence of Attributes 

16.11 Self Assessment Questions 

 

16.1 INTRODUCTION 

We know how samples can be taken from populations and can use sample 
data to calculate statistics such as the mean and the standard deviation. If we apply 
what we have learned and take several samples from a population, the statistics we 
would compute for each sample need not be the same and most probably would 
vary from sample to sample. 

Chi-square test is one of the most commonly used tests of significance. 

The chi-square test is applicable to test the hypotheses of the variance of a normal 
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population, goodness of fit of the theoretical distribution to observed frequency 

distribution, in a one way classification having k-categories. It is also applied for 

the test of independence of attributes, when the frequencies are presented in a two-

way classification called the contingency table. It is also a frequently used test in 

genetics, where one tests whether the observed frequencies in different crosses 

agree with the expected frequencies or not. 

 

16.2 OBJECTIVES 

Understanding of sampling distributions will enable the students to have 
basic knowledge  about the behavior of sampling distributions so that samples that 
are both meaningful and cost effective can be taken, due to the fact that  large 
samples are very expensive to gather, decision makers should always aim for the 
smallest sample that gives reliable results. 

The knowledge of Chi-square test will acquaint the learners to test the 
hypotheses of the variance of a normal population, goodness of fit of the 
theoretical distribution to observed frequency distribution, in a one way 
classification having k-categories. It is also applied for the test of independence of 
attributes, when the frequencies are presented in a two-way classification called 
the contingency table. It is also a frequently used test in genetics, where one tests 
whether the observed frequencies in different crosses agree with the expected 
frequencies or not. In short the main objective of this lesson is to  

 To introduce the Chi Square distribution and learn how to use them in 
statistical inferences 

 To recognize situations requiring the use of Chi-square test 

 To use Chi square test to check whether a particular collection of data 
is well described by a specified distribution 

 To see whether two classifications of same data are independent of 
each other 
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 To use Chi square distribution for confidence intervals and testing 
hypotheses about a single population variance 

 

16.3 PRECAUTIONS ABOUT USING THE CHI-SQUARE TEST 

To use a chi-square hypothesis test, we must have a sample size large 

enough to guarantee the similarity between the theoretically correct distribution 

and our sampling distribution of the chi-square statistic. When the expected 

frequencies are too small, the value of 2  will be overestimated and will result in 

too many rejections of the null hypothesis. To avoid making incorrect inferences 

from 2 hypothesis tests, follow the general rule that an expected frequency of 

less than 5 in one cell of a contingency table is too small to use.When the table 

contains more than one cell with an expected frequency of less than 5, we can 

combine these in order to get an expected frequency of 5 or more. But in doing 

this, we reduce the number of categories of data and will gain less information 

from the contingency table. 

This rule will enable us to use the chi-square hypothesis test properly, but 

unfortunately, each test can only reflect (and not improve) the quality of the data 

we feed into it. So far, we have rejected the null hypothesis if the difference 

between the observed and expected frequencies—that is, the computed chi-square 

value—is too large. In the case of the job-review preferences, we would reject the 

null hypothesis at a 0.10 level of significance if our chi-square value was 6.251 or 

more. But if the chi-square value was zero, we should be careful to question 

whether absolutely no difference exists between observed and expected 

frequencies. If we have strong feelings that some difference ought to exist, we 

should examine either the way the data were collected or the manner in which 

measurements were taken, or both, to be certain that existing differences were not 

obscured or missed in collecting sample data. 
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In the 1 860s, experiments with the characteristics of peas led the monk 

Gregor Mendel to propose the existence of genes. Mendel’s experimental results 

were astoundingly close 

 

16.4 2 TEST FOR INFERENCES ABOUT A POPULATION VARIANCE 

Suppose we want to test if a random sample n21 ..xx,x  has been drawn 

from a normal population with a specified variance 2
0

2  (say). 

 Under the null hypothesis that the population variance is 2
0

2  , the 

statistic 
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follows chi-square distribution with (n -1) d.f. 

By comparing the calculated value with the tabulated value of 2  for (n -
1) d.f at certain level of significance (usually 5%), we may retain or reject the null 
hypothesis. 

If the sample size n is large (>30), then we can use Fisher’s approximation   

and apply Normal Test. 

)1,12(~2 2  nN  so that    )1,0(~)12(2 2 NnZ   

 

16.5  Illustration 

 A psychologist after a survey of children with age below 5 years old 

regarding the variability in their attention span finds that  8 minutes. To 
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convince herself that the attention span of six years old should be different from 

that of five years old, she conducts another survey of 20 children and finds that the 

sample variance as s2=28 minutes. What would be null and the alternative 

hypothesis? At a significance level of  5%, what is the probable conclusion 

she would reach. 

Solution:- We are given that n = 20 and  s2 =28. 

We would set up the hypothesis as follows: 

H0: 2 = 64 (Null Hypothesis: the population variance is equal to 64) 

H1: 2  64 (Alternate Hypothesis: the population variance is not equal to 

64) 

Significance level =5%. 

We observe that this is a two-tailed test and therefore we ought to look at 

both the limits. 

The value of the 2 statistic is given by 

313.8
64

)28)(120()1(
2

2
2 








sn  

At 19 degrees of freedom and a significance level of 5%, the values of 2

where 0.025 of the area will lie at both the tails is 8.907 and 32.852 respectively. 

Since the calculated value of x2 does not fall in the acceptance region as shown in 

the figure below, we reject the null hypothesis. 

Therefore the conclusion she would reach is that the attention span of six 

years old varies from that of the five years old. 
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16.6 EXAMPLES BASED ON 
2 TEST FOR INFERENCES ABOUT A POPULATION 

VARIANCE 

EXAMPLE: It is believed that the precision (as measured by the variance) 

of an instrument is no more than 0.16. Write down the null and alternative 

hypothesis for testing this belief Carry out the test at 1% level given ii 

measurements of the same subject on the instrument:  2.5, 2.3,24, 2.3, 2.5, 2.7, 

2.5, 2.6, 2.6, 2.7, 2.5 

Solution. Null Hypothesis, H0: 2 = 0.16    Alternative Hypothesis, H1: 2

> 0.16     

Under the null hypothesis, H0: 2 = 0.16, the test statistic is:  
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    which follows 2 -distribution with d.f. n- 1= (11- 1) =10. 

 

Since the calculated value of 2 is less than the tabulated value 23.2 of 2  

for 10 df at 1% level of significance, it is not significant. Hence H0 may be 
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accepted and we conclude that the data are consistent with the hypothesis that the 

precision of the instrument is 0.16. 

EXAMPLE: Test the hypothesis that  = 10, given that s = 15 for a 

random sample of size 50 from a normal population. 

Solution. Null Hypothesis, H0 :  = 10. 

                                           5.112
100

22550
2
0

2
2 





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ns          

If the sample size n is large (>30), then we can use Fisher’s approximation   

and apply Normal Test. 

)1,12(~2 2  nN   so that    )1,0(~)12(2 2 NnZ   

)1,0(~05.595.915)99(225 NZ   

             

Since Z >3, it is significant at all levels of significance and hence H0 is 

rejected and we conclude that 10  

 

EXAMPLE : An owner of a company agrees to purchase the product of a 

factory, if the produced items do not have variance of more than 0.5 mm2 in their 

length. To make sure of the specifications, the buyer selects a sample of 18 items 

from his lot. The length of each item was measured to be as follows: 

Length (mm) 

18.57, 18.10, 18.61, 18.32, 18.33, 18.46, 18.12, 18.34, 18.57, 

18.22, 18.63, 18.43, 18.37, 18.64, 18.58, 18.34, 18.43, 18.63 
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Solution:-On the basis of the sample data, the hypothesis 

Null Hypothesis, H0: 2 = 0.5    Alternative Hypothesis, H1: 2 > 0.5 

Under the null hypothesis, H0: 2 = 0.5, the test statistic is:  
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                             =6112.640— 6112.125= 0.515 
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For = 0.05,  2 for 17 degrees of freedom  is 27.587. Since the 

calculated value of 2  is 1.03 which is not greater than 27.587, we accept the null 

hypothesis, : 2 = 0.5 at   = .05. and we conclude that the buyer should purchase 

the lot. 
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Example : Future Technologies Ltd. manufactures high resolution 
telescopes. The management wants its products to have a variation of less than 2 
standard deviations in resolution, while focusing on objects which are beyond 500 
light years. When they tested their newly manufactured telescope for 30 times, to 
focus on an object 500 light years away, they found that the sample standard 
deviation to be 1.46. State the hypothesis and test it at a significance level of 1%. 
Can the management accept to sell this product? 

Solutio: We are given, n=30 and s2 = (1.46)2 

We set up the hypothesis as follows: 

Null Hypothesis, H0: 2 = 4 (Null hypothesis: Population variance is equal 

to 4) 

Alternative Hypothesis, H1: 2 <4 (Alternative Hypothesis: Population 

variance is less than four) 

Level of significance =1% We observe that this is a one-tailed test 

Under the null hypothesis, H0: 2 = 4, the test statistic is:  

                                  45.15
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Now referring to the tables, we find that at 29 degrees of freedom, the 
value of 2  that leaves an area of 0.01 in the lower tail of the curve is 14.256 
(since we are testing at the lower end, this value is got at 1 -0.01 = 0.99 of the area 
under the right tail). This is shown in the figure as given below 
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Conclusion: Since the calculated value of chi square falls in the acceptance 

region, we accept the null hypothesis and conclude that standard deviation is equal 

to 2. Therefore the management will not aloe the sale of its telephone. 

 

16.7 2 test for Goodness of Fit Test. 

This test is used for testing the significance of the discrepancy between 
theory and experiment was given by Prof. Karl Pearson and is known as “Chi-
square test of goodness of fit”. It enables us to find if the deviation of the 
experiment from theory is just by chance or is it really due to the inadequacy of 
the theory to fit the observed data. 

If fi (i =1, 2, ..., n) is a set of observed (experimental) frequencies and ei (i 

= 1, 2,n) is the corresponding set of expected (theoretical or hypothetical) 

frequencies, then Karl Pearson’s chi-square, given by                      
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follows chi-square distribution with (n - 1) d.f.  

                           

How to decide :Accept H0 if 22
  (n- 1) and reject H0 if 22

  (n - 

1), where 2  is the calculated value of chi-square and 2
  (n-1) is the tabulated 

value of chi-square for (n-1) d.f. and level of significance .  

 

16.8 EXAMPLES BASED ON 2 TEST FOR GOODNESS OF FIT TEST. 

EXAMPLE: The demand for a particular spare part in a factory was found 

to vary from day-to-day. In a sample study the following information was 

obtained: 
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  Days : Mon. Tues. Wed. Thurs. Fri. Sat. 

No. of parts demanded : 1124 1125 1110 1120 1126 1115 

Test the hypothesis that the number of parts demanded does not depend on 

the day of the week. (Given : the values of 2 significance at 5, 6, 7, d.f. are 

respectively 11.07,12.59, 14.07 at the 5% level of significance.) 

Solution. Here we set up the null hypothesis, H0 that the number of parts 

demanded does not depend on the day of week. 

Under the null hypothesis, the expected frequencies of the spare part 

demanded on each of the six days would be:1/6(1124+ 1125 + 1110 + 1120 + 

1126 + 1115)=6720/6=1120 

And our test static is 
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CALCULATIONS FOR 2  

Days Observed 

frequency(fi) 

Expected 

frequency(ei) 

2)( ii ef   

i

ii

e
ef 2)(   

Monday 

Tuesday 

Wednesday 

Thursday 

Friday 

Saturday 

1124 

1125 

1110 

1120 

1126 

1115 

1120 

1120 

1120 

1120 

1120 

1120 

16 

25 

100 

0 

36 

25 

0.014 

0.022 

0.089 

0 

0.032 

0.022 

Total 6720   0.179 
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So  179.0)(
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  The tabulated 2 0.05 for 5 d.f. = 11.07.             

Conclusion: Since calculated value of 2  is less than the tabulated value, it 

is not significant and the null hypothesis may accepted at 5% level of significance. 

Hence we conclude that the numbers of parts demanded are same over the 6-day 

period.  

 

EXAMPLE: The following figures show the distribution of digits in 

numbers chosen at random from a telephone directory: 

Digits : 0 1 2 3 4 5 6 7 8 9  

Freq : 1026  1107 997  966  1075  933  1107  972 964  853 

Total 10,000 

Test whether the digits may be taken to occur equally frequently in the 

directory. 

 

16.9 2 TEST OF INDEPENDENCE OF ATTRIBUTES 

 Let us consider two attributes A divided into r classes A1, A2, ..., Ar and B 

divided into s classes B1, B2, ..., Bs. Such a classification in which attributes are 

divided into more than two classes is known as manifold classification. The 

various cell frequencies can be expressed in the following table known as r x s 

manifold contingency table where (Ai) is the number of persons possessing the 

attribute A, (i = 1, 2, ..., r), (Bj) is the number of persons possessing the attribute 
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Bj (j = 1, 2, ..., s) and (AiBj) is the number of persons possessing both the 

attributes Ai and Bj, (i = 1, 2, ..., r;j = 1, 2, ..., s). 

 

 

Here the problem is to test if the two attributes A and B under 

consideration independent or not. 

Under the null hypothesis that the attributes are independent, the 

theoretical frequencies are calculated by using 

sizesample
totalcolumnjthtotalrowitheij


                

the test statistic in this case is given by 
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                                                  

 Where ije is the expected frequency in column i and row j 

fij = observed frequency for contingency table category in column i and 

row j 

which is distributed as a 2 -variate with (r - 1) (s -1) degrees of freedom. 
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16.10 EXAMPLES BASED ON 2 TEST OF INDEPENDENCE OF ATTRIBUTES 

EXAMPLE: Two sample polls of votes for two candidates A and B for a 

public office are taken, one from among the residents of rural areas. The results 

are given in the adjoining table. Examine whether the nature of the area is related 

to voting preference in this election. 

Area Vote for A Vote for B Total 

Rural 

Urban 

620 

550 

380 

450 

1000 

1000 

Total 1170 830 2000 

 

Sol: Under the null hypothesis that the nature of the area is independent of 

the voting preference in the election, we get the expected frequencies as follows 
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Tabulated 2 0.05 for (2-1) (2-1) =1 d.f. is 3.841. Since calculated 2  is 

much greater than the tabulated value, it is highly significant and null hypothesis 
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is rejected at 5% level of significance. Thus we conclude that nature of area is 

related to voting preference in the election. 

 

EXAMPLE: (2 2 CONTINGENCY TABLE). For the 2 x2 table, 

a b 

c d 

 

Prove that chi-square test of independence gives 
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Similarly we get 

              
N

bcaddEdcEc
N

bcadbEb 



 )();()(  

 Substituting in (1), we get 














)(
1

)(
1

)(
1

)(
1][

2

2
2

dEcEbEaEN
bcad

 






































))((
1

))((
1

))((
1

))((
1][ 2

dcdbdccadbbacabaN
bcad

 

































))()(())()((
][ 2

dbdcca
cadb

dbcaba
dcba

N
bcad  

             































))()(())()((
][ 2

dbdcca
cadb

dbcaba
dcba

N
bcad  

 































))()(())()((
][ 2

dbdcca
cadb

dbcaba
badcbcad  






















))()()((
][ 2

dcdbcaba
dcba

N
bcad  














))()()((
][ 2

dcdbcaba
bcadN   

Hence Proved 
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16.11 Self Assessment Questions 

Question No 1 what are the types of observational data suitable for the chi-

square test, in a contingency table? 

Question No 2 What do you understand by the test of goodness of fit? 

Question No 3 Discuss a contingency table. 

Question No 4 Following table gives the data regarding the field of study 

in the university and their field of specialization in High School. 

Specialization in High 

School 

Field of study in the University 

Biology 

Physics and Maths 

Agriculture 

Humanities 

 Biology Medicine Agriculture 

 26 52 23 

  3 44 8 

  4 1 15 

  6 11 10 

  

Check whether  is there any dependency of the field of study in the 

university on their field of specialization in High School. 

 

Question No 5 Following table gives the number of births according to 

their sex and condition at the time of birth. 

Sex Condition - 

Normal   Abnormal 

Male   19 5 
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Female   30 6 

Test at = 0.05, whether the condition at birth depends on the sex of the 

child. 

Question No 6  In a departmental examination, the candidates of both the 

sexes yielded results as presented here in the (2 x 2) table. 

Sex Pass Fail 

Male 

Female 

42 

14 

2 

6 

 

Can it be inferred that he result of the test is related to the sex of the 

candidates. Perform a suitable statistical test to arrive at the correct decision, using 

a 5 per cent level.8 

Question No 7 Describe the use of the 2 test in testing of independence of 

attributes in a (2 X 2) contingency table 

Question No 8 A private coaching school claims that 60% of the students, 

coached in the school, will be selected in a competition, 55 candidates sought 

admission in the school and only 24 candidates got selected.  

Do the result of the candidates justify the claim of the school authorities at 

1 per cent level of significance. 

 

Question No 9  The following table reveals the condition of the house and 

the condition of the children. Using the chi-square test, find out whether the 

condition of house affects the condition of children 
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Condition of 

children 

Condition of house 

 Clean  Not clean 

Total 

Very clean 

Clean 

Dirty 

76  43 

47  17 

38  25 

119 

55 

72 

Total 139  107 246 

 

Question No:-10 What are the kinds of hypotheses that can be tested by 

the chi-square test ? 

Question No:-11 Given below are the number of accidents of airplanes that 

occurred on different days of a week. Find out whether the airplane accidents are 

uniformly distributed over the seven days of the week. 

Days 

No. of Accidents 

Sun Mon Tues Wed Thurs Fri Sat Total 

16 18 10 14 13 11 16 98 

 

Question No:-12  Answer the following in not more than three lines. 

(a) Expected frequencies are obtained under which hypothesis? 

(b) Why can the chi-square not be negative? 

(c) Why can the value of F-statistic not be negative? 
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Unit 5  Lesson 17 

NON-PARAMETRIC TESTS 

Structure: 

17.1 Introduction 

17.2 Objectives  

17.3 Concept of Non Parametric Tests 

17.4 Non Parametric Methods V/S  Parametric Metohds 

17.5 Non Parametric Tests for Univariate Distributions 

17.5.1 Test for Randomness ( Run Test) 

17.5.2 Examples based on Test for Randomness ( Run Test) 

17.5.3 The Sign Test 

17.5.4 Examples based on Sign Test 

17.5.5 The Wilcoxon Test  

17.6 Self Assessment Questions 

 

17.1 Introduction 

In most of the Statistical tests which we have so for studied we have 

some of the features which are to be comply with if we have to apply  these 

statistical test correctly, for example we make the assumption of normality of  

parent population from which we draw the random Samples or we may apply 

limit theorem for sufficiently large Samples to relax the assumption of normality 

etc. 

A second assumption upon which most of the statistical tests rest is that 

meaningful sample statistic, such as mean standard deviation, can be derived from 
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the samples and used to estimate the corresponding population parameters. But the 

data which is nominal in nature or ordinal do not yield the good results. 

For such instances statistician have devised alternative procedures which 

can be used to test the data which are nominal or ordinal in nature or for which 

meaningful statistics cannot be calculated. A most important feature of these 

alternative procedures is that they do not depend upon the shape of frequency 

distribution. Since they do not depend upon the shape of frequency distribution 

they are termed as distribution free tests. Such tests do not depend upon the 

population parameters such as mean and variance, they are also called as non 

parametric tests. 

 

17.2 OBJECTIVES  

The main objectives of this lesson are. 

1. To offer a different approach to many of the decision problems 

2. To understand the basic concept of non parametric tests. 

3. To make a comparison between parametric and nonparametric tests 

4. To know how to apply these tests to univariate data in a variety of 

problems. 

 

17.3 CONCEPT OF NON PARAMETRIC TESTS 

In most of the statistical tests which we have so far studied we have two 

features common 

(i) The form of the frequency function of the parent population from 

which the samples have been drawn is assumed to be known, and 
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(ii) They were concerned with testing statistical hypothesis about the 

parameters of this frequency function or estimating its parameters. 

For example, almost all the exact (small) sample tests of significance are 

based on the fundamental assumption that the parent population is normal and are 

concerned with testing or estimating the means and variances of these populations. 

Such tests, which deal with the parameters of the population, are known as 

Parametric Tests. 

Thus, a parametric statistical test is a test whose model specifies certain 

conditions about the parameters of the population from which the samples are 

drawn. 

On the other hand, a Non-parametric (NP.) Test is a test that does not 

depend on the particular form of the basic frequency function from which the 

samples are drawn. In other words, non-parametric test does not make any 

assumption regarding the form of the population. 

In short, most of the statistical tests which we have so for studied we have 

some of the features which are to be comply with if we have to apply these 

Statistical test correctly, for example we make the assumption of normality of 

parent population form which we draw the random samples or We may apply 

central limit theorem for sufficiently large Samples to relax the normality 

assumption etc. 

Second assumption upon which most of the statistical tests rest is that 

meaningful sample statistic, such as mean, standard deviation, But the data Which 

is nominal in nature or Ordinal do not yield the good results. 

For such instances statistician have devised alternative procedures which 

can be used to test the data which are nominal or ordinal in nature or for which 

meaningful statistics cannot be calculated is distribution free tests. Such tests do 
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not depend upon the population parameters such as mean and variance they are  

also called as non parametric tests. 

However, certain assumptions associated with N.P. tests are: 

(i) Sample observations are independent. 

(ii) The variable under study is continuous. 

(iii) p.d.f. is continuous. This is postulated to determine the sampling 

distributions  

(iv) Lower order moments exist. 

Median is as good an index of central tendency as mean. We know, for 

symmetrical distributions, mean and median coincide. Hence, in nonparametric 

statistics median is taken as a measure of location parameter instead of mean. 

Obviously these assumptions are fewer and much weaker than those 

associated with parametric tests.  

In the above mentioned questions/problems, the question first is known as 

the problem of fit. The question second deals with the testing of randomness of 

the sample and third question deals with the testing of hypothesis whether a 

particular sample has been drawn from a specified population or not. 

 

17.4 ADVANTAGES AND DRAWBACKS OF NON-PARAMETRIC METHODS 

OVER PARAMETRIC METHODS. 

Advantages 

1. N.P. methods are readily comprehensible, very simple and easy to 

apply and do not require complicated sample theory. 

2. No assumption is made about the form of the frequency function of 

the parent population from which sampling is done. 
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3. No parametric technique will apply to the data which are mere 

classification (i.e., which are measured in nominal scale), while N.P. 

methods exist to deal with such data. 

4. Since the socio-economic data are not, in general, normally 

distributed, N.P. tests have found applications in Psychometry, 

Sociology and Educational Statistics. 

Drawbacks 

1.  NP tests can be used only if the measurements are nominal or ordinal. 

Even in that case, if a parametric test exists it is more powerful than 

the NP test. In other words, if all the assumptions of a statistical 

model are satisfied by the data and if the measurements are of 

required strength, then the NP. tests are wasteful of time and data. 

2. So far, no NP methods exist for testing interactions in ‘Analysis of 

Variance’ model unless special assumptions about the additivity of 

the model are made. 

3.  N.P. tests are designed to test statistical hypothesis only and not for 

estimating the parameters 

 

17.5  NON-PARAMETRICTESTS FOR UNIVARIATE DISTRIBUTION 

The one sample tests are generally, used to answer the questions such as: 

(i) Is there a significance difference between the observed and expected             

frequencies? 

(ii) Is it reasonable to accept that the sample is a random Sample from 

Some known population? 
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(ii) Is it reasonable to believe that the sample has been drawn from a 

Specified population? 

In the above mentioned questions/problems, the question first is known as 

the problem of fit which has been in Chi-square that of Goodness of fit and test of 

homogeneity. 

The question second deals with the testing of randomness of the sample 

and third question deals with the testing of hypothesis whether a particular sample 

has been drawn from a specified population or not. 

Here a random sample of size n is drawn from a population and the sample 

values are arranged in order of magnitude and ranked accordingly, if need be. 

Various tests lead us to decide whether the sample has come from a particular 

population. Also, we test whether the median of the population is equal to a 

known value or not. Such tests are classified as tests for goodness of fit like chi-

square test. 

 

17.5.1 TEST FOR RANDOMNESS 

ONE SAMPLE RUN TEST FOR RANDOMNESS  

One application of run test is in testing the randomness of a given set of 

the observations. The run test for randomness tests the null hypothesis that a 

sequence of events has occurred randomly, against the alternative hypothesis 

that this sequence of events has not occurred randomly. 

To test this hypothesis we have the following procedure 

Procedure: Let x1 , x2, ..xn, be the set of sample observations arranged in 

the order in which they occur. Then for each of observations we write A if the 

observation x’s is above the median (Mo) and B if it is below the median, Then 
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we determine total number of runs, where a run is defined as a sequence of 

letters of one kind surrounded by sequence of letters of other kind.  

Let R1 and R2  are the number of runs of type I and type II respectively, 

thus R=R1+R2 be the total number of runs in the sample. It is our test statistic. We 

compare this value of R with the critical value of R for given n1, n2 and level of 

significance  .If n is greater than 25, then to test the above hypothesis we use 

normal approximation as 

)1,0(~
)(.
][ N

RDS
RERZ 

  

Where   12][
21

21 



nn
nnRE      and

 )1()(
)2(2][.

21
2

21

212121





nnnn

nnnnnnRDS  

 

where, n1,and n2 are the number of observations of type I and type II 

respectively. 

 

17.5.2 EXAMPLE BASED ON RUN TEST FOR RANDOMNESS 

Example: Test the randomness of the 15 observations in the order 

obtained 

 

Solution: First of all we arrange the given (above) observations in 

ascending order and then obtain median as 
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Writing A and B under each observation according it as above or below 

the median (discard tied observations) Therefore, we. obtained the following 

sequence of A and B. 

ABAAABBABBBAAB 

thus n1=7 ,n2=7  ,R1=4, R2=4 and R=R1+R2=8 and n =7+7=14 

To test Ho : The sample is random. 

To test this hypothesis, we will use run test. Since both the n1 and n2 are 

less than 25, the critical value of R at 5 percent level of significance is 3 and 

13(from table) Thus we do not reject the null hypothesis of randomness. 

EXAMPLE: Following is a sequence of heads (H) and tails (T) in tossing 

of a coin 14 times. 

HTTHHHTHTTHHTH 

Test whether the heads and tails occur in random order. [Given: = 0.05, 

rL= 2, ru = 12] 

Ans. For the given sequence, The sample size, n = 14, No. of heads,n1= 8 

No. of tails,n2= 6 No. of runs of H,r1 =5  No. of runs of T, r2= 4   

so that r=5+4=9 

Since the observed value of r = 9 lies between the critical values 3 and 12, 

we accept H0. It means that the heads and tails occur in random order or it can be 

said that the coin is unbiased. 

 

17.5.3 THE SIGN TEST 

The sign test is the simplest of the non-parametric tests. Its name comes 

from the fact that it is based on the direction (i.e. signs of + and -) of observations 
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and not on their numerical magnitude. The sign test is applied to make the 

hypothesis test about preferences, single median and the median of paired 

differences for two dependent populations. 

 Let us use this test to test the hypothesis that the sample has been drawn 

from a population with c.d.f. f0(x) or with median M0. That is 

)()(:)()(: 0100 xFxFHagainstxFxFH   

or equivalently  

0100 :: MMHagainstMMH   

2
1:

2
1: 10  pHagainstpH  

Where p is the probability that the number of observations less than the 

median. 

To test this hypothesis the following test procedure will be followed. 

Procedure : Let x1 , x2, ..xn, be a random sample drawn from a continuous 

population with median M. Let M0 be the value of median under Ho. Further let 

Di= Xi-M0, i = 1, 2, 3, .n and put plus sign (+) or negative sign (-) according as Di 

>0 or Di<O and discard those Di’s for which Di, =0. 

Let S denotes the number of plus signs, then S follows a binomial 

distribution with parameters n and p. where p =1/2 and n is the sum of plus and 

minus signs. To test the above Ho, we find the probability 
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If this probability is greater than the given level of significance ( ), we 

accept Ho, otherwise reject Ho. Further if n is large, then to test Ho we use normal 

approximation as 
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17.5.4 EXAMPLE BASED ON THE SIGN TEST 

Example : The average income (as measured be median) of women 

employees in a firm is Rs 3500 per month. A sample of 13 men chosen from the 

men employee in that firm. On the basis of their incomes given below, is there 

evidence that the average income of men exceeds that of women? Income in 

thousand of Rupees 

                                  

 

 

Sot: Let M is the median of the distribution of X, where X is the income of 

men in thousand 

Then we have to test the hypothesis. 

Ho: M=M0=3.5 against H1: M>3.5  

To test Ho, let D = Xi -Mo =Xi-3.5 for i = 1 ,2 3 …n and then put plus 

signs or minus signs according as Di, >0 or Di <0  as given below in the table 

X D = Xi –Mo - signs + signs 

4.0 

3.5 

4.6 

4.4 

+0.5 

0 

1.1 

0.9 

 

 

 

 

+ 

 

+ 

+ 
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3.7 

3.4 

3.9 

4.1 

4.1 

9.9 

3.6 

3.3 

4.2 

0.2 

-0.1 

0.4 

0.6 

0.6 

6.4 

0.1 

-0.2 

0.7 

 

- 

 

 

 

 

 

- 

+ 

 

+ 

+ 

+ 

+ 

+ 

 

+ 

 

Here S number of plus signs = 10  

Thus  







2
1,12~ BS  

To test Ho, we find the probability 















































12

10

1212

10
00

12
2
1

2
1

2
112

]/10[]/[
X

sns

X ss
HSPHsSP  

0193.0)11266(
2
1 12







  

          If we take  =0.05, then critical region is given by 

};{ rSSW   

Since P = 0.0193 is less that of 05.0  so we reject Ho.  

That is, this provides reasonable evidence that the average income of men 

exceeds that of women in the firm. 
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17.5.5 THE WILCOXON TEST (WILCOXON RANK SUM TEST) 

The Wilcoxon signed-rank test is a non-parametric statistical hypothesis 

test used when comparing two related samples, matched samples, or repeated 

measurements on a single sample to assess whether their population mean ranks 

differ (i.e. it is a paired difference test). It can be used as an alternative to the 

paired Student's t-test, t-test for matched pairs, or the t-test for dependent samples 

when the population cannot be assumed to be normally distributed or data is on 

ordinal scale. 

The test is named for Frank Wilcoxon (1892–1965) who, in a single paper, 

proposed both it and the rank-sum test for two independent samples (Wilcoxon, 

1945). The test was popularized by Siegel (1956) in his influential text book on 

non-parametric statistics. Siegel used the symbol T . In consequence, the test is 

sometimes referred to as the Wilcoxon T test, and the test statistic is reported as a 

value of T.  

The ordinary sign test takes into account only the signs of differences 

between each observation and the hypothesized median M0 whereas magnitudes 

of these differences are ignored. If we take the assumption that the population is 

symmetric, the Wilcoxon test (or Wilcoxon signed-rank test) provides an 

alternative test of location which utilizes both the magnitudes and signs of these 

differences. 

Let X1, X2... Xn be a random sample from a continuous population with 

c.d.f. F(x) and median M. The test of location that takes into account not only the 

sign of deviations {xi - M0 }, i = 1, 2,... n but also the magnitudes of the 

deviations, where Mo is the median under Ho. Here we also assume that the 

http://en.wikipedia.org/wiki/Non-parametric_statistics
http://en.wikipedia.org/wiki/Statistical_hypothesis_testing
http://en.wikipedia.org/wiki/Statistical_hypothesis_testing
http://en.wikipedia.org/wiki/Paired_difference_test
http://en.wikipedia.org/wiki/Student%27s_t-test
http://en.wikipedia.org/wiki/Normally_distributed
http://en.wikipedia.org/wiki/Frank_Wilcoxon
http://en.wikipedia.org/wiki/Mann-Whitney-Wilcoxon_test
http://en.wikipedia.org/wiki/Sidney_Siegel
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probability density function of X, f(x), is symmetric about the median M0 of the 

distribution. Here our hypothesis is 

   0100 :: MMHagainstMMH        

Now Define Di = Xi -M0,     i = 1, 2….n     and define the absolute 

difference without regard to sign i.e. 

0MXD
ii   

Discard the tied observations i.e.  00  MX
i

. 

Then under Ho, the Di’s are symmetrically distributed about median zero. 

Therefore, positive and negative differences of equal magnitude have the same 

probability of occurrance i.e. 

cDPcDP ii   

Now we arrange the Di’s in ascending order of magnitudes and then assign 

ranks from1 to n. 

Now we define T and T  

0
iDwhichforranksofSumT  

0
iDwhichforranksofSumT  

Since sum of all raks is constant i.e., 
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the test based on T + T and T - T will be equivalent. In practice, the 

smallest of T + T and T - T   is used as the test statistic 

Let  T= Min( T , T ) and t  be such that   ][ tTP , then the critical 

regions for different types of alternatives will be as given below 
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Appropriate Alternative Critical Region 

H1:M>Mo     tT   

H1:M<Mo     tT   

H1:M  Mo    
2
tT  or 

2
tT   

The tables of the left-hand critical values are given by Wilcoxon. 

For large n (n >25), the distribution of standardized T may be taken to be 

N (0, 1). Under H0, the distribution of 
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17.6 SELF ASSESSMENT QUESTIONS 
1. Explain the non parametric methods how they are different from the 

parametric methods? 

2. Derive the sign test stating clearly the assumptions made for it. 

3. Explain the main difference between non parametric methods and 
parametric methods. 

4. Explain the median test, how it is applied. 

5. Give the advantages of non parametric methods over the parametric 
methods. 

6. What are runs, how they are helpful in non parametric inferences? 
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Unit 5  Lesson 18 

NON-PARAMETRIC TESTS 

Structure : 

18.1 Introduction 

18.2 Objectives  

18.3 Non Parametric Tests for bivariate distributions 

18.3.1 The Sign Test for paired samples 

18.3.2 Examples based on Sign Test for paired samples 

18.3.3 Wilcoxon Signed Rank Test for paired Data  

18.3.4 Two sample tests for unpaired data. 

18.3.5 Examples based Two sample tests for Unpaired data (Wilcoxon test) 

18.3.6 Median test 

18.4 Self assessment Questions 

 

18.1 INTRODUCTION 

Non Parametric tests based on two samples are classified into two 

categories; non-parametric tests based on two paired (dependent samples) 

samples and tests based on unpaired samples (independent samples).  

(i) When there are pairs of observations on two things being compared 

(ii) For any given pair, each of the two observations is made under 

similar extraneous conditions. 

(iii) Different pairs are compared under different conditions 
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Here (ii) give rise to "dependent pairs of observations so require different 

treatment from (i) and (ii) dependent pairs of observations 

 

18.2 OBJECTIVES 

The main objectives of this lesson is  

1. To offer a different approach to many of the decision problems 

2. To know how to apply these tests to bivariate data in a variety of 

problems. 

3. To apply non parametric test for dependent Samples. 

4. To apply non parametric test for independent samples 

 

18.3 NON PARAMETRIC TESTS FOR BIVARIATE DISTRIBUTIONS 
Non Parametric tests based on two samples are classified into two 

Categories; non-parametric tests based on two paired (dependent samples) 

Samples and tests based on unpaired samples (independent samples). 

 

18.3.1 SIGN TEST FOR PAIRED SAMPLES 

The single sample sign test procedure for testing of hypothesis is equally 
applicable to paired sample data. That is the observations in the two samples are 
matched pairs such as 

(i) X denotes a worker’s daily output before training and Y denotes 
his daily output after the training. 

(ii) X and Y are pre and post treatment observations when considering 
the effect of a single treatment. 
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Suppose X and Y are two random variables and we want to test the null 
hypothesis that the distributions of X and Y are identical. That is both the samples 
have been drawn from two populations with same c.d.f.s. 

Let ),(),.......,,(),,( 2211 nn YXYXYX   be paired samples of observations 

drawn from two populations with c.d.f,s  F(x)  and  F(y) . Thus our problem is of 

testing null hypotheses 

F(x) =  F(y) 

To test the null hypothesis H0 

Let  Di= Xi-Yi,  i = 1, 2, 3,…. .,n 

Let M be the median of population difference D, where this population is 

assumed to be continuous so that 

 P[D=M]=0    and  P[D>M] = P[D<M] = p 

And under 
2
1:0 pH

 
 

Thus null hypothesis reduces to  

2
1][
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If 0.,.  iii DeiYX put plus sign (+) and negative sign (-), if  

0.,.  iii DeiYX and discard those Di’s for which Di, =0. 

Let S denotes the number of plus signs, then S follows a binomial 
distribution with parameters n and p. where p =1/2 and n is the sum of plus and 
minus signs. To test the above Ho, we find the probability 
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If this probability is greater than the given level of significance ( ), we 

accept Ho, otherwise reject Ho. Further if n is large (n >30), we use normal 

approximation as 
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18.3.2 EXAMPLES BASED ON SIGN TEST FOR PAIRED SAMPLES 

Example : Suppose there are 16 positive and 4 minus signs in the set of 

the 20 paired observations (X, Y). Test the hypothesis that two samples are drawn 

from the same population. 

Solution : Here we want to test the hypothesis. 

H0:The two populations have an identical distribution. 

It is given that the number of plus signs i.e. S = 16, n = 20 and under H0, 

p = 1/2. Thus under H0, S~ B(20,1/2 )). To test H0, we find 
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If take  = 0.01, then we reject the null hypothesis of identical 

distribution as P < 0.01. 

 

18.3.3 Wilcoxon Signed Rank Test for paired Data  

Let ),(),.......,,(),,( 2211 nn YXYXYX  be paired samples of observations 

drawn from two populations with c.d.f,s  F(x)  and  F(y) . Thus our problem is of 

testing null hypotheses 

  F(x) =  F(y) 

To test this hypothesis following procedure is used 

To test the null hypothesis H0 

Let  Di= Xi-Yi       ;   i = 1, 2, 3,…. .,n  and find niforDi ,....,2,1  

discard those Di’s for which Di, =0.Now arrange Di  in ascending order of 

their magnitude and assign them rank from  1 to n. Next we determine T and T

,where 

0
iDwhichforranksofSumT  

0
iDwhichforranksofSumT  

Then our test statistic is 

),min(  TTTw

 
This  value of Tw can be compared with critical value of Tw, obtained 

from table for given value of n , and T.If calculated value of Tw is less than or 
equal to critical value of Tw , we reject H0 , otherwise we accept the null 
hypothesis.> f n is large we use normal approximation 
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Where 
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18.3.4 TWO SAMPLE TESTS FOR UNPAIRED DATA. 

Two Sample Tests For Unpaired Data (Wilcoxon test) 

Let X1, X2,. ..Xm be a random sample of size m from a population with 

c.d.f. F(x) and Y1, Y2,. ..,Yn be another random sample of size n from a 

population with c.d.f F(y). These samples are drawn independently from each of 

the two populations. The hypothesis of interest is that the two samples are drawn 

from identical populations i.e.  

H0: F(x) = F(y), for all x.  

In order to test this hypothesis the following is the testing procedure. 

Combine the two sample observations. Arrange the pooled observations in 

ascending order of magnitude and assign them ranks from 1 to m+n. Find the sum 

of the ranks of first sample and second sample and let W1 and W2 denote these 

sum respectively. 

Let W=W1+W2 

Sum of the ranks of all the m+n N observations 

Wilcoxon proposed a test for accepting the one-sided location alternative if 

the W1 in the combined sample is too large or two small according the alternative 

hypothesis. The two-sided location alternative hypothesis is accepted if the sum of 

ranks of first sample is either too large or two small. The Wilcoxon test statistic is 

nmNiZT
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Where Zi is defined as 
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Zi = 1 if the observation in combined sample is from first sample 

    = 0 otherwise. 

If N = (m+n) is large, we use normal approximation as 
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Note For this test, the normal approximation is good even for N = 12 

 

18.3.5 EXAMPLES BASED TWO SAMPLE TESTS FOR UNPAIRED DATA 

(WILCOXON TEST)  

Example Consider the data given in the table below describing the 

lifetimes of certain types of tubes manufactured by two methods 

New Method : 259  254 249 256 252 260 

Old Method : 250  247 253 244 251 258 

Does this indicate that the life time with new method has increased? 

Solution Here we formulate the following null hypothesis. 

H0: There is no significance difference between the life times of tubes 

manufactured by two methods. 

To test this hypothesis, we first combined the observations of both the 

samples and assign ranks after arranging in ascending order of their magnitude 
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Life time Method 

Old New 

Rank 

Old New 

244 

247 

249 

250 

251 

252 

253 

254 

256 

258 

259 

260 

Old 

Old 

 New 

Old 

Old 

 New 

Old 

 New 

 New 

Old 

 New 

 New 

1 

2 

 3 

4 

5 

 6 

7 

 8 

 9 

10 

 11 

 12 

Sum  29 49 

 

Therefore, Tw = sum of ranks of first sample =49 

Since N = m+n = 6+6 = 12 is large, so, we use normal approximation.  
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There fore  
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If 645.105.0   Zthen  
 

645.1ZSince we accept null hypothesis. 

 

 
 

18.3.6 MEDIAN TEST 

In statistics, Mood's median test is a special case of Pearson's chi-Square 

test. It is a nonparametric test that tests the null hypothesis that the medians of the 

populations from which two samples are drawn are identical. The data in each 

Sample are assigned to two groups, one consisting of data whose values are higher 

than the median Value in the two groups combined, and the other consisting of 

data whose values are at the median or below. A Pearson's chi-square test is then 

used to determine whether the observed frequencies in each group differ from 

expected frequencies derived from a distribution combining the two groups.  

 Let X1, X2,...Xm   and Y1, Y2,...Yn be  two independent random samples 

of size m and n from populations with c.d.f. F(x) and F(y) respectively. The 

hypothesis of interest is that  

2100 :)()(: MMHorxallforyFxFH YX   

where M1 and M2 are the median of first and second sample respectively. 

To test this hypothesis, the test procedure is given below 
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First of all we arrange the two sample observations together in increasing 

order and calculate the median for combined sample. Let it is M. Now we classify 

the sample values of both samples in the following 2x2 table 

 

 

 

 

 

 

 

Let m1 and n1 be the number of observations of first and second sample 

greater than the median. Now to test the hypothesis, we find the following 

probability 

 































11

11

nm
nm
n
n

m
m

P   

We compare this probability P with level of significance  .If P ,we 

accept null hypothesis , otherwise we reject it.If frequencies in  2x2 table are 

large, we may use 2 test with 1 degree of freedom for testing null hypothesis. 
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18.4 SELF ASSESSMENT QUESTIONS 

1. Explain non-parametric methods how can they be used for bivariate 

data 

2. Differentiate clearly between dependent and independent pairs of 

observations in reference to non-parametric tests. 

3. Derive the median test stating clearly assumptions made for it. 

4. Derive two sample test for unpaired data (WIlcoxon) and for paired 

data. 

5. Explain median test how it is applied 

6. Explain clearly stating assumptions if any, the sign test for paired 

samples. 
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Unit-5  Lesson 19 

NON-PARAMETRIC TESTS 

STRUCTURE 

19.1 Introduction 

19.2 Objectives 

19.3 Mann-Whitney U test 

19.3.1 Assumptions and formal statement of hypotheses in Mann-Whitney U test 

19.3.2 Procedure for Mann-Whitney U test 

19.3.3 Examples 

19.3.4. Normal approximation of Mann Whitney U test  

19.3.5 Relation of Mann Whitney U test with other tests 

19.4 Test for independence based on Spearman’s rank correlation method 

19.4.1 Example based on Spearman's rank correlation method 

19.5 Self assessment questions 

 

19.1 INTRODUCTION 
We classify Non Parametric tests based on two samples into two 

categories; non-parametric tests based on two paired (dependent samples) samples 

and tests based on unpaired samples (independent samples) 

 

19.2 OBJECTIVES 

The main objectives of this lesson are 

1. To offer a different approach to many of the decision problems 



 261

2. To know how to apply  these tests to bivariate data in a variety of 

problems. 

3. To know how to apply Mann Whitney U test. 

4. To know how to apply Spearmen’s rank correlation method to non-

parametric problems 

5. To apply non parametric test for independent samples 

 

19.3 MANN-WHITNEY U TEST 

In statistics, the Mann–Whitney U test (also called the Mann–Whitney–

Wilcoxon (MWW) or Wilcoxon rank-sum test) is a non-parametric statistical 

hypothesis test for assessing whether two independent samples of observations 

have equally large values. It is one of the most well-known non-parametric 

significance tests. It was proposed initially by Frank Wilcoxon in 1945, for equal 

sample sizes, and extended to arbitrary sample sizes and in other ways by Henry 

Mann and his student Donald Ransom Whitney in 1947.  

 

19.3.1 ASSUMPTIONS AND FORMAL STATEMENT OF 
HYPOTHESES 
 
Although Mann and Whitney developed the MWW test under the 

assumption of continuous responses with the alternative hypothesis being that one 
distribution is stochastically greater than the other, there are many other ways to 
formulate the null and alternative hypotheses such that the MWW test will give a 
valid test. 

A Very general formulation is to assume that:  
1. All the observations from both groups are independent of each other, 

http://en.wikipedia.org/wiki/Statistics
http://en.wikipedia.org/wiki/Non-parametric_statistics
http://en.wikipedia.org/wiki/Statistical_hypothesis_test
http://en.wikipedia.org/wiki/Statistical_hypothesis_test
http://en.wikipedia.org/wiki/Sampling_(statistics)
http://en.wikipedia.org/wiki/Frank_Wilcoxon
http://en.wikipedia.org/wiki/Henry_Mann
http://en.wikipedia.org/wiki/Henry_Mann
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2. The responses are ordinal or continuous measurements(i.e. one can 

atleast say, of any two observations, which is the greater), 

3. Under the null hypothesis the distributions of both groups are equal, 

so that the probability of an observation from one population (X) 

exceeding an observation from the second population (Y)equals the 

probability of an observation from Y exceeding an observation from 

X, that is, there is a symmetry between populations with respect to 

probability of random drawing of a larger observation. 

4. Under the alternative hypothesis the probability of an observation 

from one population (X) exceeding an observation from the second population (Y) 

(after correcting forties) is not equal to 0.5. The alternative may also be stated in 

terms of a one-sided test, for example: P(X > Y) + 0,5 - P(X = Y) > 0.5. 

If we add more strict assumptions than those above such that the responses 

are assumed continuous and the alternative is a location shift (i.e. 

)()( 21  xFxF ), then we can interpret a significant MWW test as showing a 

significant difference in medians. Under this location shift assumption, we can 

also interpret the MW W as assessing whether the Hodges-Lehmann estimate of 

the difference in central tendency between the two populations differs 

significantly from zero. The Hodges-Lehmann estimate for this two-sample 

problem is the median of all possible differences between an observation in the 

first sample and an observation in the second sample. 

 

19.3.2 PROCEDURE MANN-WHITNEY U TEST 

The test involves the calculation of a statistic, usually called U, whose 

distribution under the null hypothesis is known. In the case of small samples, the 

distribution is tabulated, but for sample sizes above ~20 there is a good 
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approximation using the normal distribution. Some books tabulate statistics 

equivalent to U, such as the sum of ranks in one of the samples, rather than U 

itself 

The U test is included in most modern statistical packages. It is also easily 

calculated by hand, especially for small samples. There are two ways of doing 

this. 

First, arrange all the observations into a single ranked series. That is, rank 

all the observations without regard to which sample they are in. 

For Small Samples a direct method is recommended. It is very quick, and 

gives an insight into the meaning of the U statistic. 

1. Choose the sample for which the ranks seem to be smaller (The only 

reason to do this is to make computation easier). Call this "sample 1" 

and call the other sample "sample 2." 

2. Taking each observation in sample 1, count the number of 

observations in sample 2 that have a smaller rank (count a half for any 

that are equal to it). The sum of these counts is U. 

For larger samples, a formula can be used: 

1.  Add up the ranks for the observations which came from sample 1. The 

sum of ranks in Sample 2 follows by calculation, since the sum of all the ranks 

equals N(N + 1)/2 where N is the total number of observations. 

2.  U is then given by: 

2
)1( 11

11



nnRU  

where 1n  is the sample size for sample 1, and R1   is the sum of the ranks in 

sample 1 
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Note that there is no specification as to which sample is considered sample 
1. An equally valid formula for U is  

2
)1( 22

22



nnRU  

The smaller value of U1 and U2 is the one used when consulting 
significance tables. The sum of the two values is given by  

2
)1(

2
)1( 22

2
11

121






nnRnnRUU  

Knowing that R1 + R2 = N(N + 1)/2 and N = n1 + n2 , we find that the sum 
is  

2121 nnUU   
The maximum value of U is the product of sample sizes of two samples. 
 

19.3.3 EXAMPLES 

EXAMPLE:Suppose that Aesop is dissatisfied with his classic experiment 

in which one tortoise was found to beat one hare in a race, and decides to carry out 

a significance test to discover whether the results could be extended to tortoises 

and hares in general. He collects a sample of 6 tortoises and 6 hares, and makes 

them all run his race at once. The order in which they reach the finishing post 

(their rank order, from first to last crossing the finish line) is as follows, writing T 

for a tortoise and H for a hare: 

T H H H H H T T T T T H  

What is the value of U? 

 Using the direct method, we take each tortoise in turn, and count the 
number of hares it is beaten by, getting 0, 5, 5, 5, 5, 5, which means U 
= 25. Alternatively, we could take each hare in turn, and count the 
number of tortoises it is beaten by. In this case, we get 1, 1, 1, 1, 1, 6. 
So U = 6 + 1 + 1 + 1 + 1 + 1 = 11. Note that the sum of these two 
values for U is 36, which is 6 × 6.  

http://en.wikipedia.org/wiki/Aesop
http://en.wikipedia.org/wiki/The_Tortoise_and_the_Hare
http://en.wikipedia.org/wiki/Tortoise
http://en.wikipedia.org/wiki/Hare
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 Using the indirect method: the sum of the ranks achieved by the 
tortoises is 1 + 7 + 8 + 9 + 10 + 11 = 46.  

Therefore U = 46 − (6×7)/2 = 46 − 21 = 25.  
the sum of the ranks achieved by the hares is 2 + 3 + 4 + 5 + 6 + 12 = 32, 

leading to U = 32 − 21 = 11.  

Example:Consider another hare and tortoise race, with 19 participants of 

each species, in which the outcomes are as follows: 

H H H H H H H H H T T T T T T T T T T H H H H H H H H H H T T T 

T T T T T T  

The median tortoise here comes in at position 19, and thus actually beats 

the median hare, which comes in at position 20. 

However, the value of U (for hares) is 100 

(9 Hares beaten by (x) 0 tortoises) + (10 hares beaten by (x) 10 tortoises) = 

0 + 100 = 100 

Value of U (for tortoises) is 261 

(10 tortoises beaten by 9 hares) + (9 tortoises beaten    

by 19 hares) = 90 + 171 = 261 

Consulting tables, or using the approximation below, shows that this U 
value gives significant evidence that hares tend to do better than tortoises 
(p < 0.05, two-tailed). Obviously this is an extreme distribution that would be 
spotted easily, but in a larger sample something similar could happen without it 
being so apparent. Notice that the problem here is not that the two distributions of 
ranks have different variances; they are mirror images of each other, so their 
variances are the same, but they have very different skewness. 

http://en.wikipedia.org/wiki/Variance
http://en.wikipedia.org/wiki/Skewness
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19.3.4 NORMAL APPROXIMATION OF MANN WHITNEY U TEST 

For large samples, U is approximately normally distributed. In that case, 
the standardized value 

U

UmUZ



         

where U and mU are the mean and standard deviation of U,  are given by
  

2
21nnmU    

And 
12

)1( 2121 


nnnn
U  

Since U1 + U2 = n1 n2, the mean 
2

21nn  used in the normal approximation is 

the mean of the two values of U. Therefore, the absolute value of the z statistic 

calculated will be same whichever value of U is used. 

19.3.5 RELATION OF MANN WHITNEY U TEST WITH OTHER TESTS 

Non-parametric tests are basically used in order to overcome the 
underlying assumption of normality in parametric tests. Quite general assumptions 
regarding the population are used in these tests. 

A case in point is the Mann-Whitney U-test (Also known as the Mann-

Whitney-Wilcoxon (MWW)). Unlike its parametric counterpart, the t-test for two 

samples, this test does not assume that the difference between the samples 

is normally distributed, or that the variances of the two populations are equal. 

Thus when the validity of the assumptions of t-test are questionable, the Mann-

Whitney U-Test comes into play and hence has wider applicability.  

http://en.wikipedia.org/wiki/Normal_distribution
https://explorable.com/independent-two-sample-t-test
https://explorable.com/independent-two-sample-t-test
https://explorable.com/normal-probability-distribution
https://explorable.com/sample-group
https://explorable.com/types-of-validity
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Summarizing the above discussion we can say that:The U test is 
useful in the same situations as the independent samples Student's t-test, and the 
question arises of which should be preferred. 

Ordinal data  

U remains the logical choice when the data are ordinal but not interval 

scaled, so that the spacing between adjacent values cannot be assumed to be 

constant.  

Robustness  

As it compares the sums of ranks, the Mann–Whitney test is less likely 

than the t-test to spuriously indicate significance because of the presence of 

outliers – i.e. Mann–Whitney is more robust. 

 

19.3.6 EFFICIENCY OF MANN WHITNEY U TEST 

When normality holds, MWW has an (asymptotic) efficiency of 3 / π or 

about 0.95 when compared to the t test. For distributions sufficiently far from 

normal and for sufficiently large sample sizes, the MWW can be considerably 

more efficient than the t.  

Overall, the robustness makes the MWW more widely applicable than the t 

test, and for large samples from the normal distribution, the efficiency loss 

compared to the t test is only 5%, so one can recommend MWW as the default test 

for comparing interval or ordinal measurements with similar distributions. 

The relation between efficiency and power in concrete situations isn't 

trivial though. For small sample sizes one should investigate the power of the 

MWW v/s t. 

MWW will give very similar results to performing an ordinary parametric 

two-sample t test on the rankings of the data.  

http://en.wikipedia.org/wiki/Student's_t-test#Independent_two-sample_t-test
http://en.wikipedia.org/wiki/Student's_t-test
http://en.wikipedia.org/wiki/Level_of_measurement#Ordinal_scale
http://en.wikipedia.org/wiki/Outlier
http://en.wikipedia.org/wiki/Robust_statistics
http://en.wikipedia.org/wiki/Efficiency_(statistics)
http://en.wikipedia.org/wiki/Efficiency_(statistics)
http://en.wikipedia.org/wiki/Statistical_power
http://en.wikipedia.org/wiki/T_test
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19.4 TEST FOR INDEPENDENCE BASED ON SPEARMAN’S RANK CORRELATION 

METHOD 

Let (X1, Y1), (X2, Y2 ).....(Xn ,Yn) be  a   random samples from bivariate 

population. We know that the coefficient of correlation is defined by 
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If the sample values X1, X2,...Xn and Y1, Y2,...Yn are each ranked from 1 

to n in increasing order of their magnitude and if Xi’s and Yi’s have continuous 

degrees of freedom we get a unique set of rankings and the data will reduce to n 

pairs of rankings . 

Let us write Ri =Rank (Xi), Si= Rank(Yi) ; i=1,2…..n 
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Let Di = Ri - Si = ))(( SSRR ii   then we have 
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The statistic defined in (4) and (5) is called as spearman’s rank correlation 

coefficient. From eq.(4) we see that 
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Under H0, the random variables X and Y are independent, so that the ranks 

Ri and Si are also independent. It means that  
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Thus we should reject Ho if the tabulated value of R is large , reject H0 if 

RR    

    RRPHo  

Critical Values of r, the critical values of rs can be obtained by the table for 

critical values for the Spearman Rho rank correlation coefficient test for given 

sample size and significance level. If test is two tailed, we use two critical values, 

one negative and one. positive. For left tailed test we use negative values of rs, and 

use positive value of rs if test is right tailed test. Where is Spearman’s rank 

correlation 

 

19.4.1 EXAMPLE BASED ON SPEARMAN'S RANK CORRELATION METHOD 

Example: The following table shows the per capita income (in thousands) 

and food expenditure of the family in different states. 

  

Per capita income 11 16 18 8 6 15 10 5 

Expenditures 5 7 8 3 2 8 4 2 

 

Based on above data, we can conclude that there is no significance (linear) 

correlation between the per capita incomes and expenditures, use 05.0  
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Solution:Here, the null hypothesis H0 is there is no correlation between 

per capita incomes and expenditure. And alternative hypothesis is H1 is correlation 

between per capita incomes and expenditures. 

0:0: 10   HandH   where  is the rank correlation coefficient. 

Critical region for statistic: here, n =8 and  =0.05 for two tailed test the 

critical values are + 0.738. So we will reject null hypothesis if the observed values 

of rs is either - 0.738 or less, or + 0.738 or above.  

 

-0.738 or less -0.738 to +0.738 +0.738 or above 

Rejection Non rejection Rejection 

 

Here, rs = 0.869048 is higher than 0.738 so falls in rejection region, so null 

hypothesis reject. Then we conclude that there is correlation between the per 

capita income and expenditure. 

 

19.5 SELF ASSESSMENT QUESTIONS         
l. Give advantages of non parametric methods over the parametric 

methods 

2. Explain non parametric how they can be used in case of bivariate 

data. 

3. Elaborate Mann Whitney U test with the help of suitable example  

4. Derive expression for the test Statistic for Spearman's rank correlation 

test for  independence.  
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5. Develop the following nonparametric tests, stating clearly he 

underlying assumptions  and the null hypothesis 

(a) Mann -Whitney-Wilcoxon Test 

(b) Spearman's rank correlation test for independence 

6. Describe the median test when there are two independent samples. 

What non parametric test you would like to use When theses samples 

are related. 

7. Discuss Mann-Whitney-Wilcoxon test for equality of two population 

distribution Functions 

8. Critically examine the utility of Non Parametric tests 

9. Highlight the advantages of Non Parametric tests in certain 

experimental conditions 

10. Use appropriate tests to see if there is a difference between numbers 

of days required to collect receivable amount before and after a new 

collection policy 

Before: 32 35 33 36 44 41 36 32 39 31 

After: 36 37 34 40 40 42 36 40 42 33 

Before: 47 30 34 29 41 

After: 36 37 34 40 39 


